人工智能蛋白质结构设计算法研究进展
			 | 
		
		
		| 
		  	
						       		陈志航, 季梦麟, 戚逸飞
						  	
		 | 
	
			
			
				 
					Research progress of artificial intelligence in protein design
				
			 | 
		
		
		| 
			
						       		Zhihang CHEN, Menglin JI, Yifei QI
						  	
		 | 
	
	
		 | 
	
	
		表2 固定骨架序列设计模型在TS50 &TS500测试集上的序列恢复率和困惑度[77]
  | 
	
	
		Table 2 The sequence recovery rate and perplexity of fixed-backbone sequence design models on TS50 &TS500 test sets
  | 
	
	
		 | 
	
	
		
			模型类别 Group  | 模型 Models  | TS50 | TS500 | 
|---|
 恢复率%(↑) Recovery % (↑)  | 困惑度(↓) Perplexity (↓)  | 恢复率%(↑) Recovery %(↑)  | 困惑度(↓) Perplexity (↓)  | 
|---|
 MLP  | SPIN | 30.00 | - | - | - |  | SPIN2 | 34.00 | - | - | - |  | Wang’s model | 33.00 | - | - | - |  CNN  | SPROF | 39.80 | - | - | - |  | ProDCoNN | 46.50 | - | - | - |  | DenseCPD | 50.71 | - | 55.53 | -- |  GNN  | StructGNN | 43.89 | 5.40 | 45.69 | 4.98 |  | GraphTrans | 42.20 | 5.60 | 44.66 | 5.16 |  | GVP-GNN | 44.14 | 4.71 | 49.14 | 4.20 |  | GCA[78] | 47.02 | 5.09 | 47.74 | 4.72 |  | ADesign[79] | 48.36 | 5.25 | 49.23 | 4.93 |  | ProteinMPNN | 54.43 | 3.93 | 58.08 | 3.53 |  | PiFold | 58.72 | 3.86 | 60.42 | 3.44 |   | LM-DESIGN(PiFold) | 57.89 | 3.50 | 67.78 | 3.19 |   
		 | 
	
	
		 | 
	
	
		 |