人工智能蛋白质结构设计算法研究进展
陈志航, 季梦麟, 戚逸飞

Research progress of artificial intelligence in protein design
Zhihang CHEN, Menglin JI, Yifei QI
表2 固定骨架序列设计模型在TS50 &TS500测试集上的序列恢复率和困惑度77
Table 2 The sequence recovery rate and perplexity of fixed-backbone sequence design models on TS50 &TS500 test sets

模型类别

Group

模型

Models

TS50TS500

恢复率%(↑)

Recovery %

(↑)

困惑度(↓)

Perplexity

(↓)

恢复率%(↑)

Recovery %(↑)

困惑度(↓)

Perplexity (↓)

MLP

SPIN30.00---
SPIN234.00---
Wang’s model33.00---

CNN

SPROF39.80---
ProDCoNN46.50---
DenseCPD50.71-55.53--

GNN

StructGNN43.895.4045.694.98
GraphTrans42.205.6044.665.16
GVP-GNN44.144.7149.144.20
GCA[78]47.025.0947.744.72
ADesign[79]48.365.2549.234.93
ProteinMPNN54.433.9358.083.53
PiFold58.723.8660.423.44
LM-DESIGN(PiFold)57.893.5067.783.19