合成生物学 ›› 2024, Vol. 5 ›› Issue (4): 754-769.DOI: 10.12211/2096-8280.2023-102
洪源1,2,3, 刘妍1,4,5
收稿日期:
2023-12-01
修回日期:
2024-05-29
出版日期:
2024-08-31
发布日期:
2024-09-19
通讯作者:
刘妍
作者简介:
基金资助:
Yuan HONG1,2,3, Yan LIU1,4,5
Received:
2023-12-01
Revised:
2024-05-29
Online:
2024-08-31
Published:
2024-09-19
Contact:
Yan LIU
摘要:
脑类器官是一种基于人多能干细胞的三维体外模型,能够模拟人脑的细胞异质性、结构和功能。再生医学是一个多学科交叉的领域,致力于应用工程学和生物学手段修复因年龄、疾病或外伤而受损的组织或器官。脑类器官技术作为再生医学领域的一种重要手段,具有广阔的应用前景和重要的科学意义。近年来,利用组织工程和诱导因子分化技术,研究人员成功构建出不同脑区的脑类器官模型,可用于模拟脑损伤或修复病变组织。本文将系统介绍包括大脑皮层、海马、纹状体、中脑、丘脑及下丘脑、小脑和视网膜在内的脑区特异类器官构建技术的最新进展,总结其在再生医学领域中的应用,并概括当前脑类器官应用面临的挑战,如异质性大、缺乏脉管系统和成熟度较低等。这将加深对人类大脑的理解,并增强脑类器官在基础研究和临床研究中的进一步应用。
中图分类号:
洪源, 刘妍. 脑类器官在再生医学中的研究进展[J]. 合成生物学, 2024, 5(4): 754-769.
Yuan HONG, Yan LIU. Research progress of brain organoids in regenerative medicine[J]. Synthetic Biology Journal, 2024, 5(4): 754-769.
脑区 类型 | 年份 | 课题组 | 分化方法 | 参考文献 |
---|---|---|---|---|
大脑 皮层 | 2008 | Yoshiki Sasai | PSC在含有Dkk -1和Lefty-1的神经分化培养基中自组织形成SFEBq培养物 | [ |
2013 | Juergen A. Knoblich | 先将PSC重聚成拟胚体,并生成神经外胚层,随后将其嵌入Matrigel,在没有外源性生长因子的条件下悬浮培养 | [ | |
2015 | Sergiu P. Paşca | hiPSC形成拟胚体后使用Dorsomorphin和SB431542进行神经诱导分化,6天后转移至含FGF2和EGF的培养基中,体外培养第25天更换成BDNF和NT3 | [ | |
2016 | Hongjun Song & Guo-li Ming | iPSC重聚的拟胚体先在dorsomorphin和A-83的条件下培养7天,并用基质胶包埋后添加CHIR99021、WNT3A和SB431542因子培养1周后转移至微型旋转生物反应器继续培养 | [ | |
海马体 | 2015 | Yoshiki Sasai | hESC重聚形成SFEBq后,添加IWR1e和 SB431542培养18天,随后加入CHIR和BMP4诱导海马体分化 | [ |
纹状体 | 2020 | Sergiu P. Paşca | hiPSC形成拟胚体后,添加DMH1和SB431542培养6天,随后在第6~22天添加Activin A、IWP2和SR11237促进纹状体的分化 | [ |
2022 | Ma Lixiang | PSC重聚后在含LDN-193189和SB431542的培养基中培养10天,随后在purmorphamine的诱导下培养至第25天 | [ | |
中脑 | 2016 | Ng Huck-Hui | hESC重聚成拟胚体后第4天开始添加SHH-C25II和FGF8诱导中脑分化命运,神经外胚层出现后包埋类器官,转移至低吸附六孔板中培养 | [ |
2016 | Song Hongjun & Ming Guo-li | iPSC重聚后加入SHH、FGF-8、SB431542、LDN193189和CHIR99021诱导中脑命运,并在第14天时将其转移至微型旋转生物反应器继续培养 | [ | |
丘脑和 下丘脑 | 2016 | Song Hongjun & Ming Guo-li | iPSC重聚后先加入SB431542 和LDN193189,分化第4~7天,加入WNT3A、SHH和purmorphamine诱导下丘脑命运,随后持续添加FGF2和CNTF促进类器官成熟 | [ |
2019 | Park In-Hyun | hESC重聚后添加SB431542、LDN193189和insulin促进尾侧的神经诱导,第8天开始添加PD0325901和BMP7诱导丘脑分化 | [ | |
2021 | Song Hongjun & Ming Guo-li | hiPSC经过双SMAD抑制诱导神经外胚层命运,同时加入IWR1-endo、SAG、PMA和SHH促进弓状核分化,第12天开始与小鼠下丘脑星形胶质细胞共培养 | [ | |
小脑 | 2015 | Yoshiki Sasai | 将hESC重聚为SFEBq,第2~14天在含有胰岛素和SB431542的培养基中,持续添加重组人FGF2,并在后期加入FGF19和SDF1促进极性结构的形成 | [ |
2024 | Giorgia Quadrato | hiPSC重聚后第0~16天加入SB431542、Noggin、FGF8b和CHIR99021诱导后脑分化命运,并在第30天开始加入T3和BDNF促进后脑成熟,加入SDF1a完成小脑模式化 | [ | |
视网膜 | 2012 | Yoshiki Sasai | hESC重聚形成SFEBq后,在 IWR1e、FBS、SAG和CHIR99021的诱导下,自组织形成视网膜类器官 | [ |
2014 | M. Valeria Canto-Soler | 将hiPSC重聚后,分化第7天时用基质胶包埋,并在第4周手动分离神经视网膜结构域,从第42天开始向培养基中添加FBS、Taurine和GlutaMAX,在培养过程中,每天都需添加RA以促进光感受器的成熟 | [ |
表1 脑区特异类器官的分化流程
Table1 The differentiation methods of brain region-specific organoids
脑区 类型 | 年份 | 课题组 | 分化方法 | 参考文献 |
---|---|---|---|---|
大脑 皮层 | 2008 | Yoshiki Sasai | PSC在含有Dkk -1和Lefty-1的神经分化培养基中自组织形成SFEBq培养物 | [ |
2013 | Juergen A. Knoblich | 先将PSC重聚成拟胚体,并生成神经外胚层,随后将其嵌入Matrigel,在没有外源性生长因子的条件下悬浮培养 | [ | |
2015 | Sergiu P. Paşca | hiPSC形成拟胚体后使用Dorsomorphin和SB431542进行神经诱导分化,6天后转移至含FGF2和EGF的培养基中,体外培养第25天更换成BDNF和NT3 | [ | |
2016 | Hongjun Song & Guo-li Ming | iPSC重聚的拟胚体先在dorsomorphin和A-83的条件下培养7天,并用基质胶包埋后添加CHIR99021、WNT3A和SB431542因子培养1周后转移至微型旋转生物反应器继续培养 | [ | |
海马体 | 2015 | Yoshiki Sasai | hESC重聚形成SFEBq后,添加IWR1e和 SB431542培养18天,随后加入CHIR和BMP4诱导海马体分化 | [ |
纹状体 | 2020 | Sergiu P. Paşca | hiPSC形成拟胚体后,添加DMH1和SB431542培养6天,随后在第6~22天添加Activin A、IWP2和SR11237促进纹状体的分化 | [ |
2022 | Ma Lixiang | PSC重聚后在含LDN-193189和SB431542的培养基中培养10天,随后在purmorphamine的诱导下培养至第25天 | [ | |
中脑 | 2016 | Ng Huck-Hui | hESC重聚成拟胚体后第4天开始添加SHH-C25II和FGF8诱导中脑分化命运,神经外胚层出现后包埋类器官,转移至低吸附六孔板中培养 | [ |
2016 | Song Hongjun & Ming Guo-li | iPSC重聚后加入SHH、FGF-8、SB431542、LDN193189和CHIR99021诱导中脑命运,并在第14天时将其转移至微型旋转生物反应器继续培养 | [ | |
丘脑和 下丘脑 | 2016 | Song Hongjun & Ming Guo-li | iPSC重聚后先加入SB431542 和LDN193189,分化第4~7天,加入WNT3A、SHH和purmorphamine诱导下丘脑命运,随后持续添加FGF2和CNTF促进类器官成熟 | [ |
2019 | Park In-Hyun | hESC重聚后添加SB431542、LDN193189和insulin促进尾侧的神经诱导,第8天开始添加PD0325901和BMP7诱导丘脑分化 | [ | |
2021 | Song Hongjun & Ming Guo-li | hiPSC经过双SMAD抑制诱导神经外胚层命运,同时加入IWR1-endo、SAG、PMA和SHH促进弓状核分化,第12天开始与小鼠下丘脑星形胶质细胞共培养 | [ | |
小脑 | 2015 | Yoshiki Sasai | 将hESC重聚为SFEBq,第2~14天在含有胰岛素和SB431542的培养基中,持续添加重组人FGF2,并在后期加入FGF19和SDF1促进极性结构的形成 | [ |
2024 | Giorgia Quadrato | hiPSC重聚后第0~16天加入SB431542、Noggin、FGF8b和CHIR99021诱导后脑分化命运,并在第30天开始加入T3和BDNF促进后脑成熟,加入SDF1a完成小脑模式化 | [ | |
视网膜 | 2012 | Yoshiki Sasai | hESC重聚形成SFEBq后,在 IWR1e、FBS、SAG和CHIR99021的诱导下,自组织形成视网膜类器官 | [ |
2014 | M. Valeria Canto-Soler | 将hiPSC重聚后,分化第7天时用基质胶包埋,并在第4周手动分离神经视网膜结构域,从第42天开始向培养基中添加FBS、Taurine和GlutaMAX,在培养过程中,每天都需添加RA以促进光感受器的成熟 | [ |
1 | STILES J, JERNIGAN T L. The basics of brain development[J]. Neuropsychology Review, 2010, 20(4): 327-348. |
2 | WANG M Y, ZHANG L, GAGE F H. Modeling neuropsychiatric disorders using human induced pluripotent stem cells[J]. Protein & Cell, 2020, 11(1): 45-59. |
3 | NESTLER E J, HYMAN S E. Animal models of neuropsychiatric disorders[J]. Nature Neuroscience, 2010, 13(10): 1161-1169. |
4 | KELAVA I, LANCASTER M A. Stem cell models of human brain development[J]. Cell Stem Cell, 2016, 18(6): 736-748. |
5 | QIAN X Y, SONG H J, MING G L. Brain organoids: advances, applications and challenges[J]. Development, 2019, 146(8): dev166074. |
6 | KIM S H, CHANG M Y. Application of human brain organoids-opportunities and challenges in modeling human brain development and neurodevelopmental diseases[J]. International Journal of Molecular Sciences, 2023, 24(15): 12528. |
7 | KIM J H, KOO B K, KNOBLICH J A. Human organoids: model systems for human biology and medicine[J]. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571-584. |
8 | EVANS M J, KAUFMAN M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819): 154-156. |
9 | THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391): 1145-1147. |
10 | TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. |
11 | TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. |
12 | LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467): 373-379. |
13 | MARIANI J, COPPOLA G, ZHANG P, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders[J]. Cell, 2015, 162(2): 375-390. |
14 | PAŞCA A M, SLOAN S A, CLARKE L E, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture[J]. Nature Methods, 2015, 12(7): 671-678. |
15 | QIAN X Y, NGUYEN H N, SONG M M, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5): 1238-1254. |
16 | Organoids[J]. Nature Reviews Methods Primers, 2022, 2: 95. |
17 | CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7): 1586-1597. |
18 | WU Y H, YE W R, GAO Y, et al. Application of organoids in regenerative medicine[J]. Stem Cells, 2023, 41(12): 1101-1112. |
19 | BAGLEY J A, REUMANN D, BIAN S, et al. Fused cerebral organoids model interactions between brain regions[J]. Nature Methods, 2017, 14: 743-751. |
20 | CIANI L, SALINAS P C. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity[J]. Nature Reviews Neuroscience, 2005, 6(5): 351-362. |
21 | LIU A M, NISWANDER L A. Bone morphogenetic protein signalling and vertebrate nervous system development[J]. Nature Reviews Neuroscience, 2005, 6(12): 945-954. |
22 | MADEN M. Retinoic acid in the development, regeneration and maintenance of the nervous system[J]. Nature Reviews Neuroscience, 2007, 8(10): 755-765. |
23 | GUILLEMOT F, ZIMMER C. From cradle to grave: the multiple roles of fibroblast growth factors in neural development[J]. Neuron, 2011, 71(4): 574-588. |
24 | TAO Y, ZHANG S C. Neural subtype specification from human pluripotent stem cells[J]. Cell Stem Cell, 2016, 19(5): 573-586. |
25 | MERTENS J, MARCHETTO M C, BARDY C, et al. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience[J]. Nature Reviews Neuroscience, 2016, 17(7): 424-437. |
26 | EIRAKU M, WATANABE K, MATSUO-TAKASAKI M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5): 519-532. |
27 | SAKAGUCHI H, KADOSHIMA T, SOEN M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue[J]. Nature Communications, 2015, 6: 8896. |
28 | MIURA Y, LI M Y, BIREY F, et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells[J]. Nature Biotechnology, 2020, 38(12): 1421-1430. |
29 | CHEN X Y, SAIYIN H, LIU Y, et al. Human striatal organoids derived from pluripotent stem cells recapitulate striatal development and compartments[J]. PLoS Biology, 2022, 20(11): e3001868. |
30 | JO J, XIAO Y X, SUN A X, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2): 248-257. |
31 | XIANG Y F, TANAKA Y, CAKIR B, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids[J]. Cell Stem Cell, 2019, 24(3): 487-497.e7. |
32 | HUANG W K, WONG S Z H, PATHER S R, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J]. Cell Stem Cell, 2021, 28(9): 1657-1670.e10. |
33 | MUGURUMA K, NISHIYAMA A, KAWAKAMI H, et al. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells[J]. Cell Reports, 2015, 10(4): 537-550. |
34 | ATAMIAN A, BIRTELE M, HOSSEINI N, et al. Human cerebellar organoids with functional Purkinje cells[J]. Cell Stem Cell, 2024, 31(1): 39-51.e6. |
35 | NAKANO T, ANDO S, TAKATA N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs[J]. Cell Stem Cell, 2012, 10(6): 771-785. |
36 | ZHONG X F, GUTIERREZ C, XUE T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[J]. Nature Communications, 2014, 5: 4047. |
37 | LEDOUX J E. Emotion circuits in the brain[J]. Annual Review of Neuroscience, 2000, 23: 155-184. |
38 | KADOSHIMA T, SAKAGUCHI H, NAKANO T, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(50): 20284-20289. |
39 | ABUD E M, RAMIREZ R N, MARTINEZ E S, et al. iPSC-derived human microglia-like cells to study neurological diseases[J]. Neuron, 2017, 94(2): 278-293.e9. |
40 | MADHAVAN M, NEVIN Z S, SHICK H E, et al. Induction of myelinating oligodendrocytes in human cortical spheroids[J]. Nature Methods, 2018, 15(9): 700-706. |
41 | ANAND K S, DHIKAV V. Hippocampus in health and disease: an overview[J]. Annals of Indian Academy of Neurology, 2012, 15(4): 239-246. |
42 | GROVE E A, TOLE S. Patterning events and specification signals in the developing hippocampus[J]. Cerebral Cortex, 1999, 9(6): 551-561. |
43 | YU D X, DI GIORGIO F P, YAO J, et al. Modeling hippocampal neurogenesis using human pluripotent stem cells[J]. Stem Cell Reports, 2014, 2(3): 295-310. |
44 | GEUZE E, VERMETTEN E, BREMNER J D. MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders[J]. Molecular Psychiatry, 2005, 10(2): 160-184. |
45 | COX J, WITTEN I B. Striatal circuits for reward learning and decision-making[J]. Nature Reviews Neuroscience, 2019, 20(8): 482-494. |
46 | SMITH Y, VILLALBA R M, RAJU D V. Striatal spine plasticity in Parkinson’s disease: pathological or not?[J]. Parkinsonism & Related Disorders, 2009, 15(): S156-S161. |
47 | TEICHMANN M, DUPOUX E, KOUIDER S, et al. The role of the striatum in rule application: the model of Huntington’s disease at early stage[J]. Brain, 2005, 128(Pt 5): 1155-1167. |
48 | LANGEN M, BOS D, NOORDERMEER S D S, et al. Changes in the development of Striatum are involved in repetitive behavior in autism[J]. Biological Psychiatry, 2014, 76(5): 405-411. |
49 | CRITTENDEN J R, GRAYBIEL A M. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments[J]. Frontiers in Neuroanatomy, 2011, 5: 59. |
50 | MONCAYO J. Midbrain infarcts and hemorrhages[J]. Frontiers of Neurology and Neuroscience, 2012, 30: 158-161. |
51 | XI J J, LIU Y, LIU H S, et al. Specification of midbrain dopamine neurons from primate pluripotent stem cells[J]. Stem Cells, 2012, 30(8): 1655-1663. |
52 | TIENG V, STOPPINI L, VILLY S, et al. Engineering of midbrain organoids containing long-lived dopaminergic neurons[J]. Stem Cells and Development, 2014, 23(13): 1535-1547. |
53 | MONZEL A S, SMITS L M, HEMMER K, et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells[J]. Stem Cell Reports, 2017, 8(5): 1144-1154. |
54 | JO J, YANG L, TRAN H D, et al. Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations[J]. Annals of Neurology, 2021, 90(3): 490-505. |
55 | MOHAMED N V, LÉPINE P, LACALLE-AURIOLES M, et al. Microfabricated disk technology: rapid scale up in midbrain organoid generation[J]. Methods, 2022, 203: 465-477. |
56 | JARAZO J, BARMPA K, MODAMIO J, et al. Parkinson’s disease phenotypes in patient neuronal cultures and brain organoids improved by 2-hydroxypropyl-β-cyclodextrin treatment[J]. Movement Disorders, 2022, 37(1): 80-94. |
57 | ZHU W Y, TAO M D, HONG Y, et al. Dysfunction of vesicular storage in young-onset Parkinson’s patient-derived dopaminergic neurons and organoids revealed by single cell electrochemical cytometry[J]. Chemical Science, 2022, 13(21): 6217-6223. |
58 | BLACKSHAW S, SCHOLPP S, PLACZEK M, et al. Molecular pathways controlling development of thalamus and hypothalamus: from neural specification to circuit formation[J]. The Journal of Neuroscience, 2010, 30(45): 14925-14930. |
59 | SUZUKI-HIRANO A, OGAWA M, KATAOKA A, et al. Dynamic spatiotemporal gene expression in embryonic mouse thalamus[J]. The Journal of Comparative Neurology, 2011, 519(3): 528-543. |
60 | SHIRAISHI A, MUGURUMA K, SASAI Y. Generation of thalamic neurons from mouse embryonic stem cells[J]. Development, 2017, 144(7): 1211-1220. |
61 | FLIGOR C M, LAVEKAR S S, HARKIN J, et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids[J]. Stem Cell Reports, 2021, 16(9): 2228-2241. |
62 | OGAWA K, SUGA H, OZONE C, et al. Vasopressin-secreting neurons derived from human embryonic stem cells through specific induction of dorsal hypothalamic progenitors[J]. Scientific Reports, 2018, 8(1): 3615. |
63 | WANG L H, MEECE K, WILLIAMS D J, et al. Differentiation of hypothalamic-like neurons from human pluripotent stem cells[J]. The Journal of Clinical Investigation, 2015, 125(2): 796-808. |
64 | LONGLEY M, YEO C H. Distribution of neural plasticity in cerebellum-dependent motor learning[J]. Progress in Brain Research, 2014, 210: 79-101. |
65 | KELLY E, MENG F T, FUJITA H, et al. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits[J]. Nature Neuroscience, 2020, 23(9): 1102-1110. |
66 | LOW A Y T, GOLDSTEIN N, GAUNT J R, et al. Reverse-translational identification of a cerebellar satiation network[J]. Nature, 2021, 600(7888): 269-273. |
67 | VAN ESSEN M J, NAYLER S, BECKER E B E, et al. Deconstructing cerebellar development cell by cell[J]. PLoS Genetics, 2020, 16(4): e1008630. |
68 | CHEN Y, BURY L A, CHEN F, et al. Generation of advanced cerebellar organoids for neurogenesis and neuronal network development[J]. Human Molecular Genetics, 2023, 32(18): 2832-2841. |
69 | MUGURUMA K, NISHIYAMA A, ONO Y, et al. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells[J]. Nature Neuroscience, 2010, 13(10): 1171-1180. |
70 | KARAMAZOVOVA S, MATUSKOVA V, ISMAIL Z, et al. Neuropsychiatric symptoms in spinocerebellar ataxias and Friedreich ataxia[J]. Neuroscience and Biobehavioral Reviews, 2023, 150: 105205. |
71 | WANG S S H, KLOTH A D, BADURA A. The cerebellum, sensitive periods, and autism[J]. Neuron, 2014, 83(3): 518-532. |
72 | ERSKINE L, HERRERA E. Connecting the retina to the brain[J]. ASN Neuro, 2014, 6(6): 1759091414562107. |
73 | STENKAMP D L. Development of the vertebrate eye and retina[J]. Progress in Molecular Biology and Translational Science, 2015, 134: 397-414. |
74 | GBD 2019 Blindness and Vision Impairment Collaborators. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study[J]. The Lancet Global Health, 2021, 9(2): e130-e143. |
75 | EIRAKU M, TAKATA N, ISHIBASHI H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[J]. Nature, 2011, 472(7341): 51-56. |
76 | KUWAHARA A, OZONE C, NAKANO T, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue[J]. Nature Communications, 2015, 6: 6286. |
77 | COWAN C S, RENNER M, DE GENNARO M, et al. Cell types of the human retina and its organoids at single-cell resolution[J]. Cell, 2020, 182(6): 1623-1640.e34. |
78 | DISTEFANO T, CHEN H Y, PANEBIANCO C, et al. Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors[J]. Stem Cell Reports, 2018, 10(1): 300-313. |
79 | XUE Y T, SEILER M J, TANG W C, et al. Retinal organoids on-a-chip: a micro-millifluidic bioreactor for long-term organoid maintenance[J]. Lab on a Chip, 2021, 21(17): 3361-3377. |
80 | PAN D, XIA X X, ZHOU H, et al. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids[J]. Stem Cell Research & Therapy, 2020, 11(1): 366. |
81 | GABRIEL E, ALBANNA W, PASQUINI G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles[J]. Cell Stem Cell, 2021, 28(10): 1740-1757.e8. |
82 | HALLBERGSON A F, GNATENCO C, PETERSON D A. Neurogenesis and brain injury: managing a renewable resource for repair[J]. The Journal of Clinical Investigation, 2003, 112(8): 1128-1133. |
83 | EICHMÜLLER O L, KNOBLICH J A. Human cerebral organoids—a new tool for clinical neurology research[J]. Nature Reviews Neurology, 2022, 18(11): 661-680. |
84 | TANG X Y, XU L, WANG J S, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome[J]. The Journal of Clinical Investigation, 2021, 131(12): e135763. |
85 | GONZALEZ C, ARMIJO E, BRAVO-ALEGRIA J, et al. Modeling amyloid beta and tau pathology in human cerebral organoids[J]. Molecular Psychiatry, 2018, 23(12): 2363-2374. |
86 | GHATAK S, DOLATABADI N, TRUDLER D, et al. Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls[J]. eLife, 2019, 8: e50333. |
87 | SMITS L M, REINHARDT L, REINHARDT P, et al. Modeling Parkinson’s disease in midbrain-like organoids[J]. NPJ Parkinson’s Disease, 2019, 5: 5. |
88 | LIU C Y, FU Z X, WU S S, et al. Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington’s disease[J]. EMBO Molecular Medicine, 2022, 14(7): e15851. |
89 | PEREIRA J D, DUBREUIL D M, DEVLIN A C, et al. Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions[J]. Nature Communications, 2021, 12(1): 4744. |
90 | SZEBÉNYI K, WENGER L M D, SUN Y, et al. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology[J]. Nature Neuroscience, 2021, 24(11): 1542-1554. |
91 | GAO C, SHI Q H, PAN X, et al. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis[J]. Cell Reports, 2024, 43(3): 113892. |
92 | GARCEZ P P, LOIOLA E C, MADEIRO DA COSTA R, et al. Zika virus impairs growth in human neurospheres and brain organoids[J]. Science, 2016, 352(6287): 816-818. |
93 | CUGOLA F R, FERNANDES I R, RUSSO F B, et al. The Brazilian Zika virus strain causes birth defects in experimental models[J]. Nature, 2016, 534(7606): 267-271. |
94 | HUANG C L, WANG Y M, LI X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. The Lancet, 2020, 395(10223): 497-506. |
95 | PELLEGRINI L, ALBECKA A, MALLERY D L, et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids[J]. Cell Stem Cell, 2020, 27(6): 951-961.e5. |
96 | JACOB F, PATHER S R, HUANG W K, et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium[J]. Cell Stem Cell, 2020, 27(6): 937-950.e9. |
97 | PAȘCA A M, PARK J Y, SHIN H W, et al. Human 3D cellular model of hypoxic brain injury of prematurity[J]. Nature Medicine, 2019, 25(5): 784-791. |
98 | LAI J D, BERLIND J E, FRICKLAS G, et al. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury[J]. Cell Stem Cell, 2024, 31(4): 519-536.e8. |
99 | SHARMA A, SANCES S, WORKMAN M J, et al. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery[J]. Cell Stem Cell, 2020, 26(3): 309-329. |
100 | PAŞCA S P. Assembling human brain organoids[J]. Science, 2019, 363(6423): 126-127. |
101 | BIREY F, ANDERSEN J, MAKINSON C D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652): 54-59. |
102 | XIANG Y F, TANAKA Y, PATTERSON B, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration[J]. Cell Stem Cell, 2017, 21(3): 383-398.e7. |
103 | SONG L Q, YUAN X G, JONES Z, et al. Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues[J]. Scientific Reports, 2019, 9(1): 5977. |
104 | LIN Y T, SEO J, GAO F, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types[J]. Neuron, 2018, 98(6): 1141-1154.e7. |
105 | ANDERSEN J, REVAH O, MIURA Y, et al. Generation of functional human 3D cortico-motor assembloids[J]. Cell, 2020, 183(7): 1913-1929.e26. |
106 | PARK S E, GEORGESCU A, HUH D. Organoids-on-a-chip[J]. Science, 2019, 364(6444): 960-965. |
107 | SALMON I, GREBENYUK S, ABDEL FATTAH A R, et al. Engineering neurovascular organoids with 3D printed microfluidic chips[J]. Lab on a Chip, 2022, 22(8): 1615-1629. |
108 | CHO A N, JIN Y, AN Y, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids[J]. Nature Communications, 2021, 12(1): 4730. |
109 | SEILER S T, MANTALAS G L, SELBERG J, et al. Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids[J]. Scientific Reports, 2022, 12(1): 20173. |
110 | ZHU Y J, ZHANG X X, SUN L Y, et al. Engineering human brain assembloids by microfluidics[J]. Advanced Materials, 2023, 35(14): e2210083. |
111 | PARK J, WETZEL I, MARRIOTT I, et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease[J]. Nature Neuroscience, 2018, 21(7): 941-951. |
112 | TAGLE D A. The NIH microphysiological systems program: developing in vitro tools for safety and efficacy in drug development[J]. Current Opinion in Pharmacology, 2019, 48: 146-154. |
113 | DEDHIA P H, BERTAUX-SKEIRIK N, ZAVROS Y, et al. Organoid models of human gastrointestinal development and disease[J]. Gastroenterology, 2016, 150(5): 1098-1112. |
114 | XU M, LEE E M, WEN Z X, et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen[J]. Nature Medicine, 2016, 22(10): 1101-1107. |
115 | MESCI P, DE SOUZA J S, MARTIN-SANCHO L, et al. SARS-CoV-2 infects human brain organoids causing cell death and loss of synapses that can be rescued by treatment with Sofosbuvir[J]. PLoS Biology, 2022, 20(11): e3001845. |
116 | PARK J C, JANG S Y, LEE D, et al. A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids[J]. Nature Communications, 2021, 12(1): 280. |
117 | SETIA H, MUOTRI A R. Brain organoids as a model system for human neurodevelopment and disease[J]. Seminars in Cell & Developmental Biology, 2019, 95: 93-97. |
118 | VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378): 920-926. |
119 | BAUERSACHS H G, BENGTSON C P, WEISS U, et al. N-methyl-d-aspartate receptor-mediated preconditioning mitigates excitotoxicity in human induced pluripotent stem cell-derived brain organoids[J]. Neuroscience, 2022, 484: 83-97. |
120 | BOWLES K R, SILVA M C, WHITNEY K, et al. ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids[J]. Cell, 2021, 184(17): 4547-4563.e17. |
121 | YIN F C, ZHU Y J, WANG Y Q, et al. Engineering brain organoids to probe impaired neurogenesis induced by cadmium[J]. ACS Biomaterials Science & Engineering, 2018, 4(5): 1908-1915. |
122 | GUERRA M, MEDICI V, WEATHERITT R, et al. Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum[J]. Translational Psychiatry, 2023, 13(1): 114. |
123 | CUI K L, WANG Y Q, ZHU Y J, et al. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model[J]. Microsystems & Nanoengineering, 2020, 6: 49. |
124 | SKARDAL A, ALEMAN J, FORSYTHE S, et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems[J]. Biofabrication, 2020, 12(2): 025017. |
125 | ALTINISIK N, RATHINAM D, TRAN M, et al. Brain organoids restore cortical damage[J]. Cell Stem Cell, 2023, 30(3): 241-242. |
126 | TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 168. |
127 | MANSOUR A A, GONÇALVES J T, BLOYD C W, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nature Biotechnology, 2018, 36(5): 432-441. |
128 | REAL R, PETER M, TRABALZA A, et al. In vivo modeling of human neuron dynamics and Down syndrome[J]. Science, 2018, 362(6416): eaau1810. |
129 | XIONG M, TAO Y Z, GAO Q Q, et al. Human stem cell-derived neurons repair circuits and restore neural function[J]. Cell Stem Cell, 2021, 28(1): 112-126.e6. |
130 | REVAH O, GORE F, KELLEY K W, et al. Maturation and circuit integration of transplanted human cortical organoids[J]. Nature, 2022, 610(7931): 319-326. |
131 | LOZANO R, NAGHAVI M, FOREMAN K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. The Lancet, 2013, 380(9859): 2095-2128. |
132 | WANG S N, WANG Z, XU T Y, et al. Cerebral organoids repair ischemic stroke brain injury[J]. Translational Stroke Research, 2020, 11(5): 983-1000. |
133 | CAO S Y, YANG D, HUANG Z Q, et al. Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke[J]. NPJ Regenerative Medicine, 2023, 8(1): 27. |
134 | WILSON M N, THUNEMANN M, LIU X, et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex[J]. Nature Communications, 2022, 13(1): 7945. |
135 | JGAMADZE D, LIM J T, ZHANG Z J, et al. Structural and functional integration of human forebrain organoids with the injured adult rat visual system[J]. Cell Stem Cell, 2023, 30(2): 137-152.e7. |
136 | HEEMELS M T. Neurodegenerative diseases[J]. Nature, 2016, 539(7628): 179. |
137 | POEWE W, SEPPI K, TANNER C M, et al. Parkinson disease[J]. Nature Reviews Disease Primers, 2017, 3: 17013. |
138 | FU C L, DONG B C, JIANG X, et al. A cell therapy approach based on iPSC-derived midbrain organoids for the restoration of motor function in a Parkinson’s disease mouse model[J]. Heliyon, 2024, 10(2): e24234. |
139 | KREFFT O, JABALI A, IEFREMOVA V, et al. Generation of standardized and reproducible forebrain-type cerebral organoids from human induced pluripotent stem cells[J]. Journal of Visualized Experiments: JoVE, 2018(131): 56768. |
140 | QIAN X Y, SU Y J, ADAM C D, et al. Sliced human cortical organoids for modeling distinct cortical layer formation[J]. Cell Stem Cell, 2020, 26(5): 766-781.e9. |
141 | GIANDOMENICO S L, MIERAU S B, GIBBONS G M, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output[J]. Nature Neuroscience, 2019, 22(4): 669-679. |
142 | WIMMER R A, LEOPOLDI A, AICHINGER M, et al. Generation of blood vessel organoids from human pluripotent stem cells[J]. Nature Protocols, 2019, 14(11): 3082-3100. |
143 | MARCHINI A, GELAIN F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine[J]. Critical Reviews in Biotechnology, 2022, 42(3): 468-486. |
144 | STUDER L, VERA E, CORNACCHIA D. Programming and reprogramming cellular age in the era of induced pluripotency[J]. Cell Stem Cell, 2015, 16(6): 591-600. |
145 | QUADRATO G, NGUYEN T, MACOSKO E Z, et al. Cell diversity and network dynamics in photosensitive human brain organoids[J]. Nature, 2017, 545(7652): 48-53. |
146 | VIERBUCHEN T, OSTERMEIER A, PANG Z P, et al. Direct conversion of fibroblasts to functional neurons by defined factors[J]. Nature, 2010, 463(7284): 1035-1041. |
147 | KIM K, DOI A, WEN B, et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature, 2010, 467(7313): 285-290. |
148 | RUBIO A, LUONI M, GIANNELLI S G, et al. Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming[J]. Scientific Reports, 2016, 6: 37540. |
149 | FREDERIKSEN H R, DOEHN U, TVEDEN-NYBORG P, et al. Non-immunogenic induced pluripotent stem cells, a promising way forward for allogenic transplantations for neurological disorders[J]. Frontiers in Genome Editing, 2021, 2: 623717. |
[1] | 王达庆, 陶婷婷, 张旭, 李洪敬. 骨骼肌芯片及其在生物医学领域的研究进展[J]. 合成生物学, 2024, 5(4): 867-882. |
[2] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||