合成生物学 ›› 2024, Vol. 5 ›› Issue (4): 754-769.DOI: 10.12211/2096-8280.2023-102

• 特约评述 • 上一篇    下一篇

脑类器官在再生医学中的研究进展

洪源1,2,3, 刘妍1,4,5   

  1. 1.南京医科大学姑苏学院,江苏 南京 211166
    2.苏州市立医院,江苏 苏州 215006
    3.南京医科大学附属苏州医院,江苏 苏州 215006
    4.南京医科大学生殖医学与子代健康全国重点实验室,江苏 南京 211166
    5.南京医科大学药学院干细胞与神经再生研究所,江苏 南京 211166
  • 收稿日期:2023-12-01 修回日期:2024-05-29 出版日期:2024-08-31 发布日期:2024-09-19
  • 通讯作者: 刘妍
  • 作者简介:洪源(1995—),男,博士。研究方向为利用人脑类器官模型开展抑郁症病理机制研究。E-mail:justhongyuan@njmu.edu.cn
    刘妍(1981—),女,教授,博士生导师。研究方向为利用人脑类器官开展神经疾病机制及细胞移植治疗研究。E-mail:yanliu@njmu.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFA1101800);国家自然科学基金(82171528);南京医科大学姑苏学院博士后科研项目(GSBSHKY202307)

Research progress of brain organoids in regenerative medicine

Yuan HONG1,2,3, Yan LIU1,4,5   

  1. 1.Gusu School,Nanjing Medical University,Nanjing 211166,Jiangsu,China
    2.Suzhou Municipal Hospital,Suzhou 215006,Jiangsu,China
    3.The Afflicated Suzhou Hospital of Nanjing Medical University,Suzhou 215006,Jiangsu,China
    4.State Key Laboratory of Reproductive Medicine and Offspring Health,Nanjing Medical University,Nanjing 211166,Jiangsu,China
    5.Institution of Stem Cells and Neuroregeneration,School of Pharmacy,Nanjing Medical University,Nanjing 211166,Jiangsu,China
  • Received:2023-12-01 Revised:2024-05-29 Online:2024-08-31 Published:2024-09-19
  • Contact: Yan LIU

摘要:

脑类器官是一种基于人多能干细胞的三维体外模型,能够模拟人脑的细胞异质性、结构和功能。再生医学是一个多学科交叉的领域,致力于应用工程学和生物学手段修复因年龄、疾病或外伤而受损的组织或器官。脑类器官技术作为再生医学领域的一种重要手段,具有广阔的应用前景和重要的科学意义。近年来,利用组织工程和诱导因子分化技术,研究人员成功构建出不同脑区的脑类器官模型,可用于模拟脑损伤或修复病变组织。本文将系统介绍包括大脑皮层、海马、纹状体、中脑、丘脑及下丘脑、小脑和视网膜在内的脑区特异类器官构建技术的最新进展,总结其在再生医学领域中的应用,并概括当前脑类器官应用面临的挑战,如异质性大、缺乏脉管系统和成熟度较低等。这将加深对人类大脑的理解,并增强脑类器官在基础研究和临床研究中的进一步应用。

关键词: 脑类器官, 药物筛选, 疾病模型, 个体化医疗, 再生医学

Abstract:

The brain, as the epicenter of human intelligence, sensation, and motor coordination, represents the pinnacle of biological complexity. Despite its critical role, the availability of live human brain tissue for research is fraught with challenges, impeding advancements in our understanding of the nervous system. Brain organoids are sophisticated three-dimensional cultures derived from human pluripotent stem cells that emulate the diverse cellular composition, structural intricacies, and functional attributes of the human brain. These organoids eclipse traditional two-dimensional cultures and animal models in mirroring the brain’s spatial organization and cellular interplay, bolstered by a genetic congruence with their human counterparts. This congruence renders them particularly adept at modeling neuropsychiatric conditions and pioneering cell-based therapeutic interventions. Regenerative medicine, a confluence of engineering and biological sciences, endeavors to restore tissues and organs compromised by aging, disease, or trauma. However, the field grapples with limitations stemming from the scarcity of samples and ethical quandaries. Brain organoid technology emerges as a formidable asset in this domain, offering expansive potential and profound implications for scientific inquiry. Recent strides have seen the successful assembly of organoid models representing various brain regions through the application of tissue engineering and directed differentiation. These models hold promise for simulating neuropathological states and facilitating tissue repair. This article meticulously surveys the cutting-edge methodologies for constructing organoids specific to brain regions such as the cerebral cortex, hippocampus, striatum, midbrain, thalamus, hypothalamus, cerebellum, and retina. It delineates the principal applications of brain organoids in regenerative medicine, encompassing injury simulation, exploration of inter-regional and multi-lineage cellular dynamics, drug efficacy and toxicity assessments, and the potential for organoid transplantation. Furthermore, the review addresses the prevailing obstacles in the application of brain organoids, notably their pronounced variability, absence of vascularization, and developmental immaturity. In essence, this review seeks to illuminate the organoid generation techniques tailored to discrete brain territories and their significance in regenerative medicine’s landscape. By probing into research poised to surmount the limitations of current models, it aspires to broaden the horizons for brain organoids in both foundational research and clinical applications.

Key words: brain organoids, drug screening, disease model, personalized medicine, regenerative medicine

中图分类号: