• 特约评述 •
董玲玲1, 李斐煊1, 雷航彬1, 宋启迪1, 王世珍1,2
收稿日期:
2024-03-19
修回日期:
2024-06-20
出版日期:
2024-06-26
通讯作者:
王世珍
作者简介:
基金资助:
Lingling DONG1, Feixuan LI1, Hangbin LEI1, Qidi SONG1, Shizhen WANG1,2
Received:
2024-03-19
Revised:
2024-06-20
Online:
2024-06-26
Contact:
Shizhen WANG
摘要:
仿生分区室固定化多酶耦联是体外合成生物学的前沿技术,目的是实现多酶分区室固定化和反应的时空分离。与简单共固定化不同,仿生分区室固定化技术通过控制酶在载体上的空间分布,形成底物通道促进中间产物传递,并提高串联或耦联反应的系统稳定性、产率和产物纯度。本文综述了近年来仿生分区室固定化多酶体系的进展,包括金属有机框架(MOFs)、聚合物囊泡和聚合物胶囊等固定化策略。MOFs具有结构可控、功能易调控等优点,采用分级多孔、MOF-on-MOF和多种MOF组合等仿生策略构建分区室微反应器,实现高效的体外多酶耦联催化反应。聚合物囊泡的膜结构可模拟天然磷脂双分子层,将多个小囊泡包封到大囊泡形成“囊泡中囊泡”模仿细胞器分区室固定化酶。聚合物胶囊是通过模板法形成核壳纳米球体结构,结构稳定性优异,进一步通过层层自组装能够形成多层核壳结构实现分区室固定化。将来,微流控等技术与仿生分区室固定化多酶技术融合,将促进体外合成生物学和绿色生物制造等领域的发展。
中图分类号:
董玲玲, 李斐煊, 雷航彬, 宋启迪, 王世珍. 仿生分区室固定化多酶体系[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-025.
Lingling DONG, Feixuan LI, Hangbin LEI, Qidi SONG, Shizhen WANG. Biomimetic compartmentalization immobilization of multi-enzyme system[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-025.
固定化策略 | MOFs | 酶 | 稳定性 | 参考文献 |
---|---|---|---|---|
孔道分区 | PCN-888 | GOx和HRP | 4次循环后,GOx&HRP@PCN-888活性保持不变 | [ |
孔道分区 | PCN-333(Al) | HRP 和胆固醇氧化酶(ChOx) | 4℃下保存20天后,GOx&HRP@PCN-333仍可检测到50%酶活 | [ |
孔道分区 | PCN-333(Al) | 超氧化物歧化酶(SOD)和过氧化氢酶(CAT) | SOD&CAT@FNPCN-333在储存7天后仍可检测到酶活 | [ |
MOF-on-MOF | ZIF-8 | GOx和 HRP | HRP@H-ZIF-8-GOx 储存7天后仍可检测到70%酶活 | [ |
MOF-on-MOF | ZIF-8 | GOx和HRP | GOx@ZIF-8@HRP@ZIF-8 在4℃储存10天后仍可检测到93.96%酶活 | [ |
MOF-on-MOF | ZIF-8 | GOx 和HRP | / | [ |
MOF-on-MOF | Amine-MIL-101(Cr) and HKUST-1 | CA,FDH和GDH | 10个循环后,产率达到1077.7% | [ |
MOF-on-MOF | HKUST-1 | GOx 和HRP | HRP@GOx@HKUST-1@Fe3O4重复使用10次后仍可检测到80.6%酶活 | [ |
MOF-on-MOF | MOF-74 | 脂肪酶(CALB)and GOx | 5个循环后仍可检测到79.3%酶活 | [ |
多MOFs组合 | ZIF-90 | N-乙酰己糖胺-1-激酶(NahK),尿苷二磷酸-N-乙酰半乳糖胺焦磷酸酶(GlmU)和多磷酸激酶(PPK) | / | [ |
多MOFs组合 | ZIF-8 | GOx,HRP 和β-Gal | / | [ |
多MOFs组合 | ZIF-8 | FDH,GDH 和NADH | FDH&GDH&NADH/ZIF-8使用12小时后保留50%酶活 | [ |
多MOFs组合 | UiO-66 | HRP和GOx | GOX@MOF-Cs和 HRP@MOF-Cs 3个循环后酶活性不变 | [ |
多MOFs组合 | ZIF- L and MPN | GOx和HRP | GOx–ZIF-L和HRP-ZIF–L在4℃保存30天仍可检测到酶活 | [ |
表1 MOFs分区固定多酶
Table 1 MOFs compartmentalized immobilized multi-enzyme
固定化策略 | MOFs | 酶 | 稳定性 | 参考文献 |
---|---|---|---|---|
孔道分区 | PCN-888 | GOx和HRP | 4次循环后,GOx&HRP@PCN-888活性保持不变 | [ |
孔道分区 | PCN-333(Al) | HRP 和胆固醇氧化酶(ChOx) | 4℃下保存20天后,GOx&HRP@PCN-333仍可检测到50%酶活 | [ |
孔道分区 | PCN-333(Al) | 超氧化物歧化酶(SOD)和过氧化氢酶(CAT) | SOD&CAT@FNPCN-333在储存7天后仍可检测到酶活 | [ |
MOF-on-MOF | ZIF-8 | GOx和 HRP | HRP@H-ZIF-8-GOx 储存7天后仍可检测到70%酶活 | [ |
MOF-on-MOF | ZIF-8 | GOx和HRP | GOx@ZIF-8@HRP@ZIF-8 在4℃储存10天后仍可检测到93.96%酶活 | [ |
MOF-on-MOF | ZIF-8 | GOx 和HRP | / | [ |
MOF-on-MOF | Amine-MIL-101(Cr) and HKUST-1 | CA,FDH和GDH | 10个循环后,产率达到1077.7% | [ |
MOF-on-MOF | HKUST-1 | GOx 和HRP | HRP@GOx@HKUST-1@Fe3O4重复使用10次后仍可检测到80.6%酶活 | [ |
MOF-on-MOF | MOF-74 | 脂肪酶(CALB)and GOx | 5个循环后仍可检测到79.3%酶活 | [ |
多MOFs组合 | ZIF-90 | N-乙酰己糖胺-1-激酶(NahK),尿苷二磷酸-N-乙酰半乳糖胺焦磷酸酶(GlmU)和多磷酸激酶(PPK) | / | [ |
多MOFs组合 | ZIF-8 | GOx,HRP 和β-Gal | / | [ |
多MOFs组合 | ZIF-8 | FDH,GDH 和NADH | FDH&GDH&NADH/ZIF-8使用12小时后保留50%酶活 | [ |
多MOFs组合 | UiO-66 | HRP和GOx | GOX@MOF-Cs和 HRP@MOF-Cs 3个循环后酶活性不变 | [ |
多MOFs组合 | ZIF- L and MPN | GOx和HRP | GOx–ZIF-L和HRP-ZIF–L在4℃保存30天仍可检测到酶活 | [ |
材料 | 酶 | 稳定性 | 参考文献 |
---|---|---|---|
聚合物囊泡(聚甲基丙烯酸酯PMA、聚赖氨酸PLL) | GOx和HRP | 4℃储存2天后,仍能检测双酶级联到活性 | [ |
聚合物囊泡(异氰肽与苯乙烯的嵌段共聚物) | GOx,HRP和CALB | / | [ |
聚合物囊泡(聚(2-甲基恶唑啉)-嵌段-聚(二甲基硅氧烷)-嵌段-聚(2-甲基恶唑啉)PMOXA-PDMS-PMOXA) | GOx,HRP和β-Gal | / | [ |
聚合物囊泡(聚苯乙烯-b-聚(3-(异氰基-丙氨酰-氨基乙基)噻吩PS-b-PIAT) | N-酰基-D葡萄糖胺-2-烯丙基酶(AGE),N-乙酰神经氨酸醛缩酶(NAL)和CMP-唾液酸合成酶(CSS) | / | [ |
聚合物囊泡(聚苯乙烯-b-聚(3-(异氰基-丙氨酰-氨基乙基)噻吩PS-b-PIAT) | PAMO,CALB和ADH | / | [ |
聚合物胶囊(天然多糖) | 黄嘌呤氧化酶,尿酸酶和过氧化物酶 | 7个循环后产率是游离体系的2倍以上 | [ |
聚合物胶囊(生物聚合物和碳酸钙) | β-葡萄糖苷酶(β-Glu),GOx和HRP | 在4℃保存一个月以上仍可以检测到活性 | [ |
聚合物胶囊(藻酸盐和鱼精蛋白) | FDH和FalDH | 可循环使用8次以上 | [ |
聚合物胶囊(核酸功能化羧甲基纤维素水凝胶) | GOx和β-Gal | 在4℃下保存三天仍可检测到活性 | [ |
聚合物胶囊(聚苯乙烯磺酸盐(PSS)和聚烯丙胺盐酸盐(PAH)) | 人血清蛋白(HSA) | / | [ |
聚合物胶囊(聚烯丙胺盐酸盐和碳酸钙微粒) | (S)-3-羟丁酰辅酶A脱氢酶(DH)和黄素依赖型NADH氧化酶(NOx) | 催化反应可进行72小时 | [ |
表2 聚合物与生物材料分区室固定多酶
Table 2 Polymer and biomaterial compartmentalized immobilized multi-enzyme
材料 | 酶 | 稳定性 | 参考文献 |
---|---|---|---|
聚合物囊泡(聚甲基丙烯酸酯PMA、聚赖氨酸PLL) | GOx和HRP | 4℃储存2天后,仍能检测双酶级联到活性 | [ |
聚合物囊泡(异氰肽与苯乙烯的嵌段共聚物) | GOx,HRP和CALB | / | [ |
聚合物囊泡(聚(2-甲基恶唑啉)-嵌段-聚(二甲基硅氧烷)-嵌段-聚(2-甲基恶唑啉)PMOXA-PDMS-PMOXA) | GOx,HRP和β-Gal | / | [ |
聚合物囊泡(聚苯乙烯-b-聚(3-(异氰基-丙氨酰-氨基乙基)噻吩PS-b-PIAT) | N-酰基-D葡萄糖胺-2-烯丙基酶(AGE),N-乙酰神经氨酸醛缩酶(NAL)和CMP-唾液酸合成酶(CSS) | / | [ |
聚合物囊泡(聚苯乙烯-b-聚(3-(异氰基-丙氨酰-氨基乙基)噻吩PS-b-PIAT) | PAMO,CALB和ADH | / | [ |
聚合物胶囊(天然多糖) | 黄嘌呤氧化酶,尿酸酶和过氧化物酶 | 7个循环后产率是游离体系的2倍以上 | [ |
聚合物胶囊(生物聚合物和碳酸钙) | β-葡萄糖苷酶(β-Glu),GOx和HRP | 在4℃保存一个月以上仍可以检测到活性 | [ |
聚合物胶囊(藻酸盐和鱼精蛋白) | FDH和FalDH | 可循环使用8次以上 | [ |
聚合物胶囊(核酸功能化羧甲基纤维素水凝胶) | GOx和β-Gal | 在4℃下保存三天仍可检测到活性 | [ |
聚合物胶囊(聚苯乙烯磺酸盐(PSS)和聚烯丙胺盐酸盐(PAH)) | 人血清蛋白(HSA) | / | [ |
聚合物胶囊(聚烯丙胺盐酸盐和碳酸钙微粒) | (S)-3-羟丁酰辅酶A脱氢酶(DH)和黄素依赖型NADH氧化酶(NOx) | 催化反应可进行72小时 | [ |
材料 | 优点 | 缺点 |
---|---|---|
MOF | 性能可控性 微观可控性 | 极端条件下结构塌陷 共沉淀固定化酶催化反应 传质阻力大 |
聚合物囊泡 | 生物相容性好 尺寸分布范围广 | 酶包封率低 制备过程繁琐复杂 |
聚合物胶囊 | 良好的可回收性 形态可控 | 制备成本高 易受环境影响 |
表3 材料优缺点
Table 3 The advantages and disadvantages of materials
材料 | 优点 | 缺点 |
---|---|---|
MOF | 性能可控性 微观可控性 | 极端条件下结构塌陷 共沉淀固定化酶催化反应 传质阻力大 |
聚合物囊泡 | 生物相容性好 尺寸分布范围广 | 酶包封率低 制备过程繁琐复杂 |
聚合物胶囊 | 良好的可回收性 形态可控 | 制备成本高 易受环境影响 |
1 | SPERL J M, SIEBER V. Multienzyme cascade reactions—status and recent advances[J]. ACS Catalysis, 2018, 8(3): 2385-2396. |
2 | GIANNAKOPOULOU A, GKANTZOU E, POLYDERA A, et al. Multienzymatic nanoassemblies: recent progress and applications[J]. Trends in Biotechnology, 2020, 38(2): 202-216. |
3 | SCHOFFELEN S, VAN HEST J C M. Chemical approaches for the construction of multi-enzyme reaction systems[J]. Current Opinion in Structural Biology, 2013, 23(4): 613-621. |
4 | SCHOFFELEN S, VAN HEST J C M. Multi-enzyme systems: bringing enzymes together in vitro [J]. Soft Matter, 2012, 8(6): 1736-1746. |
5 | HAMMES G G, WU C W. Regulation of enzyme activity[J]. Science, 1971, 172(3989): 1205-1211 |
6 | KÜCHLER A, YOSHIMOTO M, LUGINBÜHL S, et al. Enzymatic reactions in confined environments[J]. Nature Nanotechnology, 2016, 11(5): 409-420. |
7 | ZHU Z G, KIN TAM T, SUN F F, et al. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway[J]. Nature Communications, 2014, 5: 3026. |
8 | RÖCKER J, SCHMITT M, PASCH L, et al. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine[J]. Food Chemistry, 2016, 210: 660-670. |
9 | SOJITRA U V, NADAR S S, RATHOD V K. A magnetic tri-enzyme nanobiocatalyst for fruit juice clarification[J]. Food Chemistry, 2016, 213: 296-305. |
10 | LIU X, QI W, WANG Y F, et al. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks[J]. Nanoscale, 2017, 9(44): 17561-17570. |
11 | LI D, XIONG Q R, LIANG L, et al. Multienzyme nanoassemblies: from rational design to biomedical applications[J]. Biomaterials Science, 2021, 9(22): 7323-7342. |
12 | LIU Y, DU J J, YAN M, et al. Biomimetic enzyme nano complexes and their use as antidotes and preventive measures for alcohol intoxication[J]. Nature Nanotechnology, 2013, 8(3): 187-192. |
13 | ZHANG L Y, SINGH R, D S, et al. An artificial synthetic pathway for acetoin, 2,3-butanediol, and 2-butanol production from ethanol using cell free multi-enzyme catalysis[J]. Green Chemistry, 2018, 20(1): 230-242. |
14 | BECKER M, NIKEL P, ANDEXER J N, et al. A multi-enzyme cascade reaction for the production of 2'3'-cGAMP[J]. Biomolecules, 2021, 11(4): 590. |
15 | YIN L, GUO X, LIU L, et al. Self-assembled multimeric-enzyme nanoreactor for robust and efficient biocatalysis[J]. ACS Biomaterials Science & Engineering, 2018, 4(6): 2095-2099. |
16 | SHI T, HAN P P, YOU C, et al. An in vitro synthetic biology platform for emerging industrial biomanufacturing: bottom-up pathway design[J]. Synthetic and Systems Biotechnology, 2018, 3(3): 186-195. |
17 | SCHOONEN L, VAN HEST J C M. Compartmentalization approaches in soft matter science: from nanoreactor development to organelle mimics[J]. Advanced Materials, 2016, 28(6): 1109-1128. |
18 | THINGHOLM B, SCHATTLING P, ZHANG Y, et al. Subcompartmentalized nanoreactors as artificial organelle with intracellular activity[J]. Small, 2016, 12(13): 1806-1814. |
19 | MARGUET M, BONDUELLE C, LECOMMANDOUX S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function[J]. Chemical Society Reviews, 2013, 42(2): 512-529. |
20 | PALEOS C M, TSIOURVAS D, SIDERATOU Z. Preparation of multicompartment lipid-based systems based on vesicle interactions[J]. Langmuir, 2012, 28(5): 2337-2346. |
21 | VAN DONGEN S F M, VERDURMEN W P R, PETERS R J R W, et al. Cellular integration of an enzyme-loaded polymersome nanoreactor[J]. Angewandte Chemie International Edition, 2010, 49(40): 7213-7216. |
22 | TANNER P, ONACA O, BALASUBRAMANIAN V, et al. Enzymatic cascade reactions inside polymeric nanocontainers: a means to combat oxidative stress[J]. Chemistry, 2011, 17(16): 4552-4560. |
23 | XU C, HU S, CHEN X Y. Artificial cells: from basic science to applications[J]. Materials Today, 2016, 19(9): 516-532. |
24 | BALASUBRAMANIAN V, CORREIA A, ZHANG H B, et al. Biomimetic engineering using cancer cell membranes for designing compartmentalized nanoreactors with organelle-like functions[J]. Advanced Materials, 2017, 29(11): 1605375. |
25 | LIU J, YANG Q H, LI C. Towards efficient chemical synthesis via engineering enzyme catalysis in biomimetic nanoreactors[J]. Chemical Communications, 2015, 51(72): 13731-13739. |
26 | KRACHER D, KOURIST R. Recent developments in compartmentalization of chemoenzymatic cascade reactions[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 32: 100538. |
27 | WONG B, BOYER C, STEINBECK C, et al. Design and in situ characterization of lipid containers with enhanced drug retention[J]. Advanced Materials, 2011, 23(20): 2320-2325. |
28 | ELANI Y, LAW R V, CES O. Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors[J]. Physical Chemistry Chemical Physics, 2015, 17(24): 15534-15537. |
29 | HINZPETER F, GERLAND U, TOSTEVIN F. Optimal compartmentalization strategies for metabolic microcompartments[J]. Biophysical Journal, 2017, 112(4): 767-779. |
30 | LEE C H, LIN T S, MOU C Y. Mesoporous materials for encapsulating enzymes[J]. Nano Today, 2009, 4(2): 165-179. |
31 | GKANIATSOU E, SICARD C, RICOUX R, et al. Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection[J]. Materials Horizons, 2017, 4(1): 55-63. |
32 | SUN Q M, SHI J Q, SUN H, et al. Membrane and lumen-compartmentalized polymersomes for biocatalysis and cell mimics[J]. Biomacromolecules, 2023, 24(11): 4587-4604. |
33 | QIAO J, MA Q, CHENG C, et al. Fabrication of dual-stimuli-responsive polymer vesicles for regulation of enzymolysis efficiency in a cascade reaction[J]. Chemistry-an Asian Journal, 2023, 18(12): e202300285. |
34 | BELLUATI A, THAMBOO S, NAJER A, et al. Multicompartment polymer vesicles with artificial organelles for signal-triggered cascade reactions including cytoskeleton formation[J]. Advanced Functional Materials, 2020, 30(32): 2002949. |
35 | ZHOU L L, FAN Y X, LIU Z, et al. A multiresponsive transformation between surfactant-based coacervates and vesicles[J]. CCS Chemistry, 2021, 3(12): 358-366. |
36 | LIAN X Z, CHEN Y P, LIU T F, et al. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF[J]. Chemical Science, 2016, 7(12): 6969-6973. |
37 | ZHAO M Y, LI Y, MA X J, et al. Adsorption of cholesterol oxidase and entrapment of horseradish peroxidase in metal-organic frameworks for the colorimetric biosensing of cholesterol[J]. Talanta, 2019, 200: 293-299. |
38 | LIAN X Z, ERAZO-OLIVERAS A, PELLOIS J P, et al. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks[J]. Nature Communications, 2017, 8(1): 2075. |
39 | LIU H J, DU Y J, GAO J, et al. Compartmentalization of biocatalysts by immobilizing bienzyme in hollow ZIF-8 for colorimetric detection of glucose and phenol[J]. Industrial & Engineering Chemistry Research, 2020, 59(1): 42-51. |
40 | MAN T T, XU C X, LIU X Y, et al. Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions[J]. Nature Communications, 2022, 13(1): 305. |
41 | WU G H, LI M, LUO Z G, et al. Designed synthesis of compartmented bienzyme biocatalysts based on core-shell zeolitic imidazole framework nanostructures[J]. Small, 2023, 19(7): e2206606. |
42 | LI Y, WEN L Y, TAN T W, et al. Sequential co-immobilization of enzymes in metal-organic frameworks for efficient biocatalytic conversion of adsorbed CO2 to formate[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 394. |
43 | CHEN S J, WEN L Y, SVEC F, et al. Magnetic metal–organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis[J]. RSC Advances, 2017, 7(34): 21205-21213. |
44 | TIAN D P, HAO R P, ZHANG X M, et al. Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis[J]. Nature Communications, 2023, 14(1): 3226. |
45 | ZHENG J, XU H, LI B Z, et al. Spatially segregated MOF bioreactor enables versatile modular glycoenzyme assembly for hierarchical glycan library construction[J]. ACS Applied Materials & Interfaces, 2023, 15(16): 19807-19816. |
46 | LIANG J Y, MAZUR F, TANG C Y, et al. Peptide-induced super-assembly of biocatalytic metal-organic frameworks for programmed enzyme cascades[J]. Chemical Science, 2019, 10(34): 7852-7858. |
47 | ZHU D L, AO S S, DENG H H, et al. Ordered coimmobilization of a multienzyme cascade system with a metal organic framework in a membrane: reduction of CO2 to methanol[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33581-33588. |
48 | XU Z L, XIAO G W, LI H F, et al. Compartmentalization within self-assembled metal–organic framework nanoparticles for tandem reactions[J]. Advanced Functional Materials, 2018, 28(34): 1802479. |
49 | LIU J, GUO Z Y, LIANG K. Biocatalytic metal-organic framework-based artificial cells[J]. Advanced Functional Materials, 2019, 29(45): 1905321. |
50 | YOON J, LEE S H, TIEVES F, et al. Light-harvesting dye–alginate hydrogel for solar-driven, sustainable biocatalysis of asymmetric hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5632-5637. |
51 | WANG Y X, ZHAO Q C, HAAG R, et al. Biocatalytic synthesis using self-assembled polymeric nano- and microreactors[J]. Angewandte Chemie International Edition, 2022, 61(52): e202213974. |
52 | GODOY-GALLARDO M, LABAY C, TRIKALITIS V D, et al. Multicompartment artificial organelles conducting enzymatic cascade reactions inside cells[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 15907-15921. |
53 | VAN DONGEN S F M, NALLANI M, CORNELISSEN J J L M, et al. A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor[J]. Chemistry, 2009, 15(5): 1107-1114. |
54 | ELANI Y, LAW R V, CES O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways[J]. Nature Communications, 2014, 5: 5305. |
55 | KLERMUND L, POSCHENRIEDER S T, CASTIGLIONE K. Biocatalysis in polymersomes: improving multienzyme cascades with incompatible reaction steps by compartmentalization[J]. ACS Catalysis, 2017, 7(6): 3900-3904. |
56 | PETERS R J R W, MARGUET M, MARAIS S, et al. Cascade reactions in multicompartmentalized polymersomes[J]. Angewandte Chemie International Edition, 2014, 53(1): 146-150. |
57 | QU Q L, ZHANG X L, YANG A Q, et al. Spatial confinement of multi-enzyme for cascade catalysis in cell-inspired all-aqueous multicompartmental microcapsules[J]. Journal of Colloid and Interface Science, 2022, 626: 768-774. |
58 | BÄUMLER H, GEORGIEVA R. Coupled enzyme reactions in multicompartment microparticles[J]. Biomacromolecules, 2010, 11(6): 1480-1487. |
59 | SHI J F, ZHANG L, JIANG Z Y. Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization[J]. ACS Applied Materials & Interfaces, 2011, 3(3): 881-889. |
60 | ZHANG P, FISCHER A, OUYANG Y, et al. Biocatalytic cascades and intercommunicated biocatalytic cascades in microcapsule systems[J]. Chemical Science, 2022, 13(25): 7437-7448. |
61 | KREFT O, PREVOT M, MÖHWALD H, et al. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions[J]. Angewandte Chemie International Edition, 2007, 46(29): 5605-5608. |
62 | DIAMANTI E, ANDRÉS-SANZ D, ORREGO A H, et al. Surpassing substrate–enzyme competition by compartmentalization[J]. ACS Catalysis, 2023, 13(17): 11441-11454. |
63 | BHATTACHARYA A, BREA R J, SONG J J, et al. Single-chain β-D-glycopyranosylamides of unsaturated fatty acids: self-assembly properties and applications to artificial cell development[J]. The Journal of Physical Chemistry B, 2019, 123(17): 3711-3720. |
64 | DOULIEZ J P, MARTIN N, GAILLARD C, et al. Catanionic coacervate droplets as a surfactant-based membrane-free protocell model[J]. Angewandte Chemie International Edition, 2017, 56(44): 13689-13693. |
65 | GARENNE D, BEVEN L, NAVAILLES L, et al. Sequestration of proteins by fatty acid coacervates for their encapsulation within vesicles[J]. Angewandte Chemie International Edition, 2016, 55(43): 13475-13479. |
66 | LARRAÑAGA A, LOMORA M, SARASUA J R, et al. Polymer capsules as micro-/ nanoreactors for therapeutic applications: current strategies to control membrane permeability[J]. Progress in Materials Science, 2017, 90: 325-357. |
67 | ARASTE F, ALIABADI A, ABNOUS K, et al. Self-assembled polymeric vesicles: focus on polymersomes in cancer treatment[J]. Journal of Controlled Release, 2021, 330: 502-528. |
68 | BALASUBRAMANIAN V, HERRANZ-BLANCO B, ALMEIDA P V, et al. Multifaceted polymersome platforms: spanning from self-assembly to drug delivery and protocells[J]. Progress in Polymer Science, 2016, 60: 51-85. |
69 | PALIVAN C G, FISCHER-ONACA O, DELCEA M, et al. Protein-polymer nanoreactors for medical applications[J]. Chemical Society Reviews, 2012, 41(7): 2800-2823. |
70 | TANNER P, EGLI S, BALASUBRAMANIAN V, et al. Can polymeric vesicles that confine enzymatic reactions act as simplified organelles?[J]. FEBS Letters, 2011, 585(11): 1699-1706. |
71 | LU A X, OH H, TERRELL J L, et al. A new design for an artificial cell: polymer microcapsules with addressable inner compartments that can harbor biomolecules, colloids or microbial species[J]. Chemical Science, 2017, 8(10): 6893-6903. |
72 | 卞康晴, 郭灵怡, 迟文雅, 等. 聚合物囊泡的稳定性及H+透膜特性考察[J]. 药学实践与服务, 2024, 42(1): 12-17. |
BIAN K Q, GUO L Y, CHI W Y, et al. Study on the stability and H+ permeable membrane properties of polymersomes[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(1): 12-17. | |
73 | HU X L, ZHANG Y Q, XIE Z G, et al. Stimuli-responsive polymersomes for biomedical applications[J]. Biomacromolecules, 2017, 18(3): 649-673. |
74 | LIMA A L, GRATIERI T, CUNHA-FILHO M, et al. Polymeric nanocapsules: a review on design and production methods for pharmaceutical purpose[J]. Methods, 2022, 199: 54-66. |
75 | KREFT O, SKIRTACH A G, SUKHORUKOV G B, et al. Remote control of bioreactions in multicompartment capsules[J]. Advanced Materials, 2007, 19(20): 3142-3145. |
76 | XU W N, STEINSCHULTE A A, PLAMPER F A, et al. Hierarchical assembly of star polymer polymersomes into responsive multicompartmental microcapsules[J]. Chemistry of Materials, 2016, 28(3): 975-985. |
77 | WU M, WANG Y Y, YAN N, et al. Self-assembly of polymeric nanovesicles into hierarchical supervesicles and its application in selectable multicompartmental encapsulation[J]. Macromolecules, 2021, 54(4): 1905-1911. |
78 | BJÖRNMALM M, CUI J W, BERTLEFF-ZIESCHANG N, et al. Nanoengineering particles through template assembly[J]. Chemistry of Materials, 2017, 29(1): 289-306. |
79 | ZHANG Z, ZHANG S S, SU R R, et al. Controlled release mechanism and antibacterial effect of layer-by-layer self-assembly thyme oil microcapsule[J]. Journal of Food Science, 2019, 84(6): 1427-1438. |
80 | KIM B, JEON T Y, OH Y K, et al. Microfluidic production of semipermeable microcapsules by polymerization-induced phase separation[J]. Langmuir, 2015, 31(22): 6027-6034. |
81 | TAGUCHI Y, ITO D, SAITO N, et al. Preparation and characterization of microcapsules containing particulate phosphorescent agent with suspension polymerization[J]. Polymers for Advanced Technologies, 2017, 28(3): 379-385. |
82 | ISHIZUKA F, KUCHEL R P, LU H X, et al. Synthesis of microcapsules using inverse emulsion periphery RAFT polymerization via SPG membrane emulsification[J]. Polymer Chemistry, 2016, 7(46): 7047-7051. |
83 | DE GEEST B G, SANDERS N N, SUKHORUKOV G B, et al. Release mechanisms for polyelectrolyte capsules[J]. Chemical Society Reviews, 2007, 36(4): 636-649. |
84 | SHI J F, WU Y Z, ZHANG S H, et al. Bioinspired construction of multi-enzyme catalytic systems[J]. Chemical Society Reviews, 2018, 47(12): 4295-4313. |
85 | LIANG J Y, GAO S, LIU J, et al. Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(10): 5421-5428. |
86 | SCHMIDT S, CASTIGLIONE K, KOURIST R. Overcoming the incompatibility challenge in chemoenzymatic and multi-catalytic cascade reactions[J]. Chemistry, 2018, 24(8): 1755-1768. |
87 | ROCHA-MARTIN J, VELASCO-LOZANO S, GUISÁN J M, et al. Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production[J]. Green Chemistry, 2014, 16(1): 303-311. |
88 | ROCHA-MARTÍN J, DE LAS RIVAS B, MUÑOZ R, et al. Rational co-immobilization of Bi-enzyme cascades on porous supports and their applications in bio-redox reactions with in situ recycling of soluble cofactors[J]. ChemCatChem, 2012, 4(9): 1279-1288. |
89 | CHUNG J, HWANG E T, KIM J H, et al. Modular multi-enzyme cascade process using highly stabilized enzyme microbeads[J]. Green Chemistry, 2014, 16(3): 1163-1167. |
90 | HU C, BAI Y X, HOU M, et al. Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis[J]. Science Advances, 2020, 6(5): eaax5785. |
91 | FORNERA S, KUHN P, LOMBARDI D, et al. Sequential immobilization of enzymes in microfluidic channels for cascade reactions[J]. ChemPlusChem, 2012, 77(2): 98-101. |
92 | OBST F, MERTZ M, MEHNER P J, et al. Enzymatic synthesis of sialic acids in microfluidics to overcome cross-inhibitions and substrate supply limitations[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49433-49444. |
93 | CHU L L, ZHANG X Y, LI J N, et al. Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis[J]. Chinese Chemical Letters, 2024, 35(4): 108896. |
94 | PATIL P D, SALOKHE S, KARVEKAR A, et al. Microfluidic based continuous enzyme immobilization: a comprehensive review[J]. International Journal of Biological Macromolecules, 2023, 253(Pt 6): 127358. |
95 | HE S, LIAN H T, CAO X G, et al. Cascaded enzymatic reaction-mediated multicolor pixelated quantitative system integrated microfluidic wearable analytical device (McPiQ-μWAD) for non-invasive and sensitive glucose diagnostics[J]. Sensors and Actuators B: Chemical, 2022, 369: 132345. |
96 | LI Z Y, UNO N, DING X, et al. Bioinspired CRISPR-mediated cascade reaction biosensor for molecular detection of HIV using a glucose meter[J]. ACS Nano, 2023, 17(4): 3966-3975. |
97 | BRAHAM S A, SIAR E H, ARANA-PEÑA S, et al. Effect of concentrated salts solutions on the stability of immobilized enzymes: influence of inactivation conditions and immobilization protocol[J]. Molecules, 2021, 26(4): 968. |
98 | MATEO C, PALOMO J M, FERNANDEZ-LORENTE G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques[J]. Enzyme and Microbial Technology, 2007, 40(6): 1451-1463. |
99 | RODRIGUES R C, BERENGUER-MURCIA Á, CARBALLARES D, et al. Stabilization of enzymes via immobilization: multipoint covalent attachment and other stabilization strategies[J]. Biotechnology Advances, 2021, 52: 107821. |
100 | SHORTALL K, OTERO F, BENDL S, et al. Enzyme immobilization on metal organic frameworks: the effect of buffer on the stability of the support[J]. Langmuir, 2022, 38(44): 13382-13391. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||