合成生物学 ›› 2023, Vol. 4 ›› Issue (3): 590-610.DOI: 10.12211/2096-8280.2023-005
唐一鸣, 姚逸飞, 杨中元, 周运, 王子超, 韦广红
收稿日期:
2023-01-12
修回日期:
2023-03-28
出版日期:
2023-06-30
发布日期:
2023-07-05
通讯作者:
韦广红
作者简介:
基金资助:
Yiming TANG, Yifei YAO, Zhongyuan YANG, Yun ZHOU, Zichao WANG, Guanghong WEI
Received:
2023-01-12
Revised:
2023-03-28
Online:
2023-06-30
Published:
2023-07-05
Contact:
Guanghong WEI
摘要:
蛋白质的错误折叠和聚集与一系列神经退行性疾病密切相关,比如阿尔茨海默病、帕金森病等,其主要病理特征是以蛋白质异常聚集形成的淀粉样纤维为主要成分的包涵体。近期研究表明疾病相关蛋白大多能够发生液液相分离,形成动态可逆的液态凝聚物(亦称无膜细胞器),并参与细胞生理过程,而突变、翻译后修饰以及微环境等因素则能促进其发生不可逆液固相变形成病理性纤维。本文以几种神经退行性疾病相关蛋白为例,重点介绍蛋白质病理性聚集和液液相分离的实验研究方法和前沿进展,蛋白质相互作用、聚集和相分离微观机理的理论和计算研究,以及预测蛋白相分离能力的机器学习方法。这些研究对深入理解蛋白质病理性聚集、相变和相分离的微观机制,以及相关疾病致病机理具有重要的科学意义,并对治疗药物的设计和开发具有潜在应用价值。
中图分类号:
唐一鸣, 姚逸飞, 杨中元, 周运, 王子超, 韦广红. 神经退行性疾病相关蛋白病理性聚集和液液相分离研究进展[J]. 合成生物学, 2023, 4(3): 590-610.
Yiming TANG, Yifei YAO, Zhongyuan YANG, Yun ZHOU, Zichao WANG, Guanghong WEI. Pathological aggregation and liquid-liquid phase separation of proteins associated with neurodegenerative diseases[J]. Synthetic Biology Journal, 2023, 4(3): 590-610.
蛋白质 | 相关疾病 | 相关文献 | |
---|---|---|---|
纤维化能力 | 相分离能力 | ||
β淀粉样蛋白(β-amyloid) | 阿尔茨海默病 | [ | 暂无报道 |
微管相关蛋白(Tau) | 阿尔茨海默病、额颞叶痴呆、帕金森病 | [ | [ |
普里昂蛋白(Prion) | 疯牛病、家族性致死性失眠症、羊瘙痒症、库鲁病 | [ | [ |
α-突触核蛋白(α-synuclein) | 帕金森病 | [ | [ |
反式激活核酸结合蛋白-43(TDP-43) | 肌萎缩侧索硬化症、额颞叶变性运动神经元疾病 | [ | [ |
融合肉瘤蛋白(FUS) | 肌萎缩侧索硬化症、额颞叶痴呆 | [ | [ |
亨廷顿蛋白(Huntingtin) | 亨廷顿病 | [ | [ |
表1 代表性神经退行性疾病相关蛋白的聚集和相分离能力
Table 1 Aggregation and phase separation of proteins associated with neurodegenerative diseases
蛋白质 | 相关疾病 | 相关文献 | |
---|---|---|---|
纤维化能力 | 相分离能力 | ||
β淀粉样蛋白(β-amyloid) | 阿尔茨海默病 | [ | 暂无报道 |
微管相关蛋白(Tau) | 阿尔茨海默病、额颞叶痴呆、帕金森病 | [ | [ |
普里昂蛋白(Prion) | 疯牛病、家族性致死性失眠症、羊瘙痒症、库鲁病 | [ | [ |
α-突触核蛋白(α-synuclein) | 帕金森病 | [ | [ |
反式激活核酸结合蛋白-43(TDP-43) | 肌萎缩侧索硬化症、额颞叶变性运动神经元疾病 | [ | [ |
融合肉瘤蛋白(FUS) | 肌萎缩侧索硬化症、额颞叶痴呆 | [ | [ |
亨廷顿蛋白(Huntingtin) | 亨廷顿病 | [ | [ |
实验方法 | 研究内容 | 参考文献 | |||
---|---|---|---|---|---|
解析空间结构 | 表征二级结构 | 表征空间形貌 | 表征蛋白内/间相互作用 | ||
圆二色谱(CD spectra) | × | √ | × | × | [ |
傅里叶红外光谱(FTIR) | × | √ | × | × | [ |
ThT荧光光谱(ThT-FS) | × | √ | × | × | [ |
扫描电子显微镜(SEM) | × | × | √ | × | [ |
透射电子显微镜(TEM) | x | x | √ | × | [ |
原子力显微镜(AFM) | × | × | √ | × | [ |
微分干涉差显微镜(DIC) | × | × | √ | × | [ |
固体核磁共振(ssNMR) | √ | √ | × | √ | [ |
X射线衍射(XRD) | √ | √ | × | × | [ |
冷冻电镜(Cryo-EM) | √ | √ | × | × | [ |
化学交联质谱(XL-MS) | × | × | × | √ | [ |
荧光共振能量转移(FRET) | × | × | × | √ | [ |
表2 研究蛋白质病理性聚集的主要实验方法
Table 2 Major experimental methods for studying protein pathological aggregation
实验方法 | 研究内容 | 参考文献 | |||
---|---|---|---|---|---|
解析空间结构 | 表征二级结构 | 表征空间形貌 | 表征蛋白内/间相互作用 | ||
圆二色谱(CD spectra) | × | √ | × | × | [ |
傅里叶红外光谱(FTIR) | × | √ | × | × | [ |
ThT荧光光谱(ThT-FS) | × | √ | × | × | [ |
扫描电子显微镜(SEM) | × | × | √ | × | [ |
透射电子显微镜(TEM) | x | x | √ | × | [ |
原子力显微镜(AFM) | × | × | √ | × | [ |
微分干涉差显微镜(DIC) | × | × | √ | × | [ |
固体核磁共振(ssNMR) | √ | √ | × | √ | [ |
X射线衍射(XRD) | √ | √ | × | × | [ |
冷冻电镜(Cryo-EM) | √ | √ | × | × | [ |
化学交联质谱(XL-MS) | × | × | × | √ | [ |
荧光共振能量转移(FRET) | × | × | × | √ | [ |
图2 神经退行性疾病相关的四种蛋白的单体、淀粉样纤维和共聚集形成的异质凝聚体[84-87]
Fig. 2 Monomer conformations, amyloid fibrils of proteins related to neurodegenerative diseases and their heterogeneous aggregates[84-87]
图4 无膜细胞器与蛋白质通过液液相分离形成的小液滴[4-6,9,106,110-115]
Fig. 4 Membrane-free organelles and liquid droplets formed by liquid-liquid phase separation of proteins[4-6,9,106,110-115]
图5 研究蛋白质液液相分离的相关计算模拟方法[155,157,159,171,175-176]
Fig. 5 Computational methods for studying protein liquid-liquid phase separation[155,157,159,171,175-176]
1 | HARDY J, SELKOE D J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356. |
2 | STEFANIS L. α-Synuclein in Parkinson's disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(2): a009399. |
3 | PRASAD A, BHARATHI V, SIVALINGAM V, et al. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis[J]. Frontiers in Molecular Neuroscience, 2019, 12: 25. |
4 | KANAAN N M, HAMEL C, GRABINSKI T, et al. Liquid-liquid phase separation induces pathogenic Tau conformations in vitro [J]. Nature Communications, 2020, 11(1): 2809. |
5 | RAY S, SINGH N, KUMAR R, et al. α-Synuclein aggregation nucleates through liquid-liquid phase separation[J]. Nature Chemistry, 2020, 12(8): 705-716. |
6 | CONICELLA A E, ZERZE G H, MITTAL J, et al. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain[J]. Structure, 2016, 24(9): 1537-1549. |
7 | GOMES E, SHORTER J. The molecular language of membraneless organelles[J]. Journal of Biological Chemistry, 2019, 294(18): 7115-7127. |
8 | WEGMANN S, EFTEKHARZADEH B, TEPPER K, et al. Tau protein liquid-liquid phase separation can initiate Tau aggregation[J]. The EMBO Journal, 2018, 37(7): e98049. |
9 | MOLLIEX A, TEMIROV J, LEE J H, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123-133. |
10 | AHMAD A, UVERSKY V N, KHAN R H. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases[J]. International Journal of Biological Macromolecules, 2022, 220: 703-720. |
11 | MEINHARDT J, SACHSE C, HORTSCHANSKY P, et al. Aβ(1-40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils[J]. Journal of Molecular Biology, 2009, 386(3): 869-877. |
12 | BITAN G, KIRKITADZE M D, LOMAKIN A, et al. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(1): 330-335. |
13 | FITZPATRICK A W P, FALCON B, HE S D, et al. Cryo-EM structures of Tau filaments from Alzheimer's disease[J]. Nature, 2017, 547(7662): 185-190. |
14 | ŠIMIĆ G, BABIĆ LEKO M, WRAY S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer's disease and other tauopathies, and possible neuroprotective strategies[J]. Biomolecules, 2016, 6(1): 6. |
15 | AMBADIPUDI S, BIERNAT J, RIEDEL D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau[J]. Nature Communications, 2017, 8: 275. |
16 | WANG L Q, ZHAO K, YUAN H Y, et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein[J]. Nature Structural & Molecular Biology, 2020, 27(6): 598-602. |
17 | AISHWARYA A, MUKHOPADHYAY S. Prion protein biology through the lens of liquid-liquid phase separation[J]. Journal of Molecular Biology, 2022, 434(1): 167368. |
18 | TANGE H, ISHIBASHI D, NAKAGAKI T, et al. Liquid-liquid phase separation of full-length prion protein initiates conformational conversion in vitro [J]. The Journal of Biological Chemistry, 2021, 296: 100367. |
19 | GUERRERO-FERREIRA R, TAYLOR N M, ARTENI A A, et al. Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy[J]. eLife, 2019, 8: e48907. |
20 | SCHWEIGHAUSER M, SHI Y, TARUTANI A, et al. Structures of α-synuclein filaments from multiple system atrophy[J]. Nature, 2020, 585(7825): 464-469. |
21 | LI Q Y, BABINCHAK W M, SUREWICZ W K. Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43[J]. Nature Communications, 2021, 12(1): 1620. |
22 | MURRAY D T, KATO M, LIN Y, et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains[J]. Cell, 2017, 171(3): 615-627.e16. |
23 | MURAKAMI T, QAMAR S, LIN J Q, et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function[J]. Neuron, 2015, 88(4): 678-690. |
24 | SCHERZINGER E, LURZ R, TURMAINE M, et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo [J]. Cell, 1997, 90(3): 549-558. |
25 | POIRIER M A, LI H L, MACOSKO J, et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization[J]. Journal of Biological Chemistry, 2002, 277(43): 41032-41037. |
26 | POSEY A E, RUFF K M, HARMON T S, et al. Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers[J]. Journal of Biological Chemistry, 2018, 293(10): 3734-3746. |
27 | PESKETT T R, RAU F, O'DRISCOLL J, et al. A liquid to solid phase transition underlying pathological huntingtin Exon1 aggregation[J]. Molecular Cell, 2018, 70(4): 588-601.e6. |
28 | IADANZA M G, JACKSON M P, HEWITT E W, et al. A new era for understanding amyloid structures and disease[J]. Nature Reviews Molecular Cell Biology, 2018, 19(12): 755-773. |
29 | NGUYEN P H, RAMAMOORTHY A, SAHOO B R, et al. Amyloid oligomers: a joint experimental/computational perspective on Alzheimer's disease, Parkinson's disease, type Ⅱ diabetes, and amyotrophic lateral sclerosis[J]. Chemical Reviews, 2021, 121(4): 2545-2647. |
30 | NASICA-LABOUZE J, NGUYEN P H, STERPONE F, et al. Amyloid β protein and Alzheimer's disease: when computer simulations complement experimental studies[J]. Chemical Reviews, 2015, 115(9): 3518-3563. |
31 | 吴荣波, 李丕龙. 液-液相分离与生物分子凝集体[J]. 科学通报, 2019, 64(22): 2285-2291. |
WU R B, LI P L. Liquid-liquid phase separation and biomolecular condensates[J]. Chinese Science Bulletin, 2019, 64(22): 2285-2291. | |
32 | 郜一飞, 李丕龙. 生物大分子“液-液”相分离: 现状与展望[J]. 中国细胞生物学学报, 2019, 41(2): 185-191. |
GAO Y F, LI P L. "Liquid-liquid" phase separation of biological macromolecules: current situation and prospects[J]. Chinese Journal of Cell Biology, 2019, 41(2): 185-191. | |
33 | GREENFIELD N, FASMAN G D. Computed circular dichroism spectra for the evaluation of protein conformation[J]. Biochemistry, 1969, 8(10): 4108-4116. |
34 | MOVASAGHI Z, REHMAN S, REHMAN D I UR. Fourier transform infrared (FTIR) spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2008, 43(2): 134-179. |
35 | SEBASTIAO M, QUITTOT N, BOURGAULT S. Thioflavin T fluorescence to analyse amyloid formation kinetics: measurement frequency as a factor explaining irreproducibility[J]. Analytical Biochemistry, 2017, 532: 83-86. |
36 | PRETORIUS E, VERMEULEN N, BESTER J, et al. A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy[J]. Toxicology Mechanisms and Methods, 2013, 23(5): 352-359. |
37 | HOLMES D F, GRAHAM H K, TROTTER J A, et al. STEM/TEM studies of collagen fibril assembly[J]. Micron, 2001, 32(3): 273-285. |
38 | DROLLE E, HANE F, LEE B, et al. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease[J]. Drug Metabolism Reviews, 2014, 46(2): 207-223. |
39 | SIADAT S M, SILVERMAN A A, DIMARZIO C A, et al. Measuring collagen fibril diameter with differential interference contrast microscopy[J]. Journal of Structural Biology, 2021, 213(1): 107697. |
40 | LEE Y H, GOTO Y. Kinetic intermediates of amyloid fibrillation studied by hydrogen exchange methods with nuclear magnetic resonance[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2012, 1824(12): 1307-1323. |
41 | BHATTACHARYYA D, KUMAR R, MEHRA S, et al. Multitude NMR studies of α-synuclein familial mutants: probing their differential aggregation propensities[J]. Chemical Communications, 2018, 54(29): 3605-3608. |
42 | SUNDE M, SERPELL L C, BARTLAM M, et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction[J]. Journal of Molecular Biology, 1997, 273(3): 729-739. |
43 | SEIDLER P M, MURRAY K A, BOYER D R, et al. Structure-based discovery of small molecules that disaggregate Alzheimer's disease tissue derived Tau fibrils in vitro [J]. Nature Communications, 2022, 13: 5451. |
44 | BRONSOMS S, TREJO S A. Applications of mass spectrometry to the study of protein aggregation[M]. Insoluble Proteins: Methods and Protocols, 2015, 1258: 331-345. |
45 | SCHULER B, EATON W A. Protein folding studied by single-molecule FRET[J]. Current Opinion in Structural Biology, 2008, 18(1): 16-26. |
46 | PELTON J T, MCLEAN L R. Spectroscopic methods for analysis of protein secondary structure[J]. Analytical Biochemistry, 2000, 277(2): 167-176. |
47 | TOWNSEND D, FULLWOOD N J, YATES E A, et al. Aggregation kinetics and filament structure of a Tau fragment are influenced by the sulfation pattern of the cofactor heparin[J]. Biochemistry, 2020, 59(41): 4003-4014. |
48 | HUDSON S A, ECROYD H, KEE T W, et al. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds[J]. The FEBS Journal, 2009, 276(20): 5960-5972. |
49 | ISLAM T, GHARIBYAN A L, LEE C C, et al. Morphological analysis of apolipoprotein E binding to Aβ amyloid using a combination of surface plasmon resonance, immunogold labeling and scanning electron microscopy[J]. BMC Biotechnology, 2019, 19(1): 97. |
50 | MAKKY A, BOUSSET L, MADIONA K, et al. Atomic force microscopy imaging and nanomechanical properties of six Tau isoform assemblies[J]. Biophysical Journal, 2020, 119(12): 2497-2507. |
51 | SALVESON P J, SPENCER R K, KREUTZER A G, et al. X-ray crystallographic structure of a compact dodecamer from a peptide derived from Aβ16-36 [J]. Organic Letters, 2017, 19(13): 3462-3465. |
52 | TUTTLE M D, COMELLAS G, NIEUWKOOP A J, et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein[J]. Nature Structural & Molecular Biology, 2016, 23(5): 409-415. |
53 | GREMER L, SCHOELZEL D, SCHENK C, et al. Fibril structure of amyloid-β (1-42) by cryo-electron microscopy[J]. Science, 2017, 358(6359): 116-119. |
54 | UBBIALI D, FRATINI M, PIERSIMONI L, et al. Direct observation of "Elongated" conformational states in α-synuclein upon liquid-liquid phase separation[J]. Angewandte Chemie, 2022, 134(46): e202205726. |
55 | TAKAMUKU M, SUGISHITA T, TAMAKI H, et al. Evolution of α-synuclein conformation ensemble toward amyloid fibril via liquid-liquid phase separation (LLPS) as investigated by dynamic nuclear polarization-enhanced solid-state MAS NMR[J]. Neurochemistry International, 2022, 157: 105345. |
56 | MENG F J, BELLAICHE M M J, KIM J Y, et al. Highly disordered amyloid-β monomer probed by single-molecule FRET and MD simulation[J]. Biophysical Journal, 2018, 114(4): 870-884. |
57 | MAHAKUD A K, SHAIKH J, RIFA IQBAL V V, et al. Amyloids on membrane interfaces: implications for neurodegeneration[J]. The Journal of Membrane Biology, 2022, 255(6): 705-722. |
58 | LU J X, QIANG W, YAU W M, et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue[J]. Cell, 2013, 154(6): 1257-1268. |
69 | KIDD M. Paired helical filaments in electron microscopy of Alzheimer's disease[J]. Nature, 1963, 197(4863): 192-193. |
60 | YAGISHITA S, ITOH Y, NAN W, et al. Reappraisal of the fine structure of Alzheimer's neurofibrillary tangles[J]. Acta Neuropathologica, 1981, 54(3): 239-246. |
61 | ZHANG W J, TARUTANI A, NEWELL K L, et al. Novel Tau filament fold in corticobasal degeneration[J]. Nature, 2020, 580(7802): 283-287. |
62 | SHI Y, ZHANG W J, YANG Y, et al. Structure-based classification of tauopathies[J]. Nature, 2021, 598(7880): 359-363. |
63 | INGELSSON M. Alpha-synuclein oligomers — neurotoxic molecules in Parkinson's disease and other lewy body disorders[J]. Frontiers in Neuroscience, 2016, 10: 408. |
64 | LI Y W, ZHAO C Y, LUO F, et al. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy[J]. Cell Research, 2018, 28(9): 897-903. |
65 | GUERRERO-FERREIRA R, TAYLOR N M, MONA D, et al. Cryo-EM structure of alpha-synuclein fibrils[J]. eLife, 2018, 7: e36402. |
66 | LI B S, GE P, MURRAY K A, et al. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel[J]. Nature Communications, 2018, 9: 3609. |
67 | BOYER D R, LI B S, SUN C Q, et al. Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs[J]. Nature Structural & Molecular Biology, 2019, 26(11): 1044-1052. |
68 | SUN Y P, LONG H F, XIA W C, et al. The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein[J]. Nature Communications, 2021, 12: 6252. |
69 | SUN Y P, HOU S Q, ZHAO K, et al. Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson's disease familial A53T mutation[J]. Cell Research, 2020, 30(4): 360-362. |
70 | MCGLINCHEY R P, NI X D, SHADISH J A, et al. The N terminus of α-synuclein dictates fibril formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(35): e2023487118. |
71 | ZHAO K, LIM Y J, LIU Z Y, et al. Parkinson's disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(33): 20305-20315. |
72 | CAO Q, BOYER D R, SAWAYA M R, et al. Cryo-EM structures of four polymorphic TDP-43 amyloid cores[J]. Nature Structural & Molecular Biology, 2019, 26(7): 619-627. |
73 | GUENTHER E L, CAO Q, TRINH H, et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation[J]. Nature Structural & Molecular Biology, 2018, 25(6): 463-471. |
74 | GUO W R, CHEN Y B, ZHOU X H, et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity[J]. Nature Structural & Molecular Biology, 2011, 18(7): 822-830. |
75 | JIANG L L, ZHAO J, YIN X F, et al. Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation[J]. Scientific Reports, 2016, 6: 23928. |
76 | LAGIER-TOURENNE C, POLYMENIDOU M, CLEVELAND D W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration[J]. Human Molecular Genetics, 2010, 19(R1): R46-R64. |
77 | LUO F, GUI X R, ZHOU H, et al. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation[J]. Nature Structural & Molecular Biology, 2018, 25(4): 341-346. |
78 | LEE M, GHOSH U, THURBER K R, et al. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS[J]. Nature Communications, 2020, 11: 5735. |
79 | SUN Y P, ZHANG S Q, HU J J, et al. Molecular structure of an amyloid fibril formed by FUS low-complexity domain[J]. iScience, 2022, 25(1): 103701. |
80 | SIMÓN-SÁNCHEZ J, SCHULTE C, BRAS J M, et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease[J]. Nature Genetics, 2009, 41(12): 1308-1312. |
81 | VASILI E, DOMINGUEZ-MEIJIDE A, OUTEIRO T F. Spreading of α-synuclein and Tau: a systematic comparison of the mechanisms involved[J]. Frontiers in Molecular Neuroscience, 2019, 12: 107. |
82 | ISEKI E, TAKAYAMA N, MARUI W, et al. Relationship in the formation process between neurofibrillary tangles and Lewy bodies in the hippocampus of dementia with Lewy bodies brains[J]. Journal of the Neurological Sciences, 2002, 195(1): 85-91. |
83 | SENGUPTA U, GUERRERO-MUÑOZ M J, CASTILLO-CARRANZA D L, et al. Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies[J]. Biological Psychiatry, 2015, 78(10): 672-683. |
84 | SIEGERT A, RANKOVIC M, FAVRETTO F, et al. Interplay between Tau and α-synuclein liquid-liquid phase separation[J]. Protein Science, 2021, 30(7): 1326-1336. |
85 | TSIGELNY I F, CREWS L, DESPLATS P, et al. Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases[J]. PLoS One, 2008, 3(9): e3135. |
86 | MORALES R, ESTRADA L D, DIAZ-ESPINOZA R, et al. Molecular cross talk between misfolded proteins in animal models of Alzheimer's and Prion diseases[J]. The Journal of Neuroscience, 2010, 30(13): 4528-4535. |
87 | ZOU W Q, XIAO X Z, YUAN J, et al. Amyloid-β42 interacts mainly with insoluble prion protein in the Alzheimer brain[J]. The Journal of Biological Chemistry, 2011, 286(17): 15095-15105. |
88 | GENG H, CHEN F F, YE J, et al. Applications of molecular dynamics simulation in structure prediction of peptides and proteins[J]. Computational and Structural Biotechnology Journal, 2019, 17: 1162-1170. |
89 | ZHAN C D, CHEN Y J, TANG Y M, et al. Green tea extracts EGCG and EGC display distinct mechanisms in disrupting Aβ42 protofibril[J]. ACS Chemical Neuroscience, 2020, 11(12): 1841-1851. |
90 | LI F Y, CHEN Y J, LIU X S, et al. Atomistic insights into A315E mutation-enhanced pathogenicity of TDP-43 core fibrils[J]. ACS Chemical Neuroscience, 2022, 13(18): 2743-2754. |
91 | NATESH S R, HUMMELS A R, SACHLEBEN J R, et al. Molecular dynamics study of water channels in natural and synthetic amyloid-β fibrils[J]. The Journal of Chemical Physics, 2021, 154(23): 235102. |
92 | LEMKUL J A, BEVAN D R. Destabilizing Alzheimer's Abeta(42) protofibrils with morin: mechanistic insights from molecular dynamics simulations[J]. Biochemistry, 2010, 49(18): 3935-3946. |
93 | FAN H M, GU R X, WANG Y J, et al. Destabilization of Alzheimer's Aβ42 protofibrils with a novel drug candidate wgx-50 by molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2015, 119(34): 11196-11202. |
94 | FROST C V, ZACHARIAS M. From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody studied by molecular dynamics simulation[J]. Proteins: Structure, Function, and Bioinformatics, 2020, 88(12): 1592-1606. |
95 | ZHAN C D, LAO Z H, TANG Y M, et al. Natural stereoisomeric flavonoids exhibit different disruptive effects and the mechanism of action on Aβ42 protofibril[J]. Chemical Communications, 2021, 57(35): 4267-4270. |
96 | YAO Y F, TANG Y M, ZHOU Y, et al. Baicalein exhibits differential effects and mechanisms towards disruption of α-synuclein fibrils with different polymorphs[J]. International Journal of Biological Macromolecules, 2022, 220: 316-325. |
97 | TARUS B, TRAN T T, NASICA-LABOUZE J, et al. Structures of the Alzheimer's wild-type Aβ1-40 dimer from atomistic simulations[J]. The Journal of Physical Chemistry B, 2015, 119(33): 10478-10487. |
98 | ZHANG Y L, HASHEMI M, LV Z J, et al. Self-assembly of the full-length amyloid Aβ42 protein in dimers[J]. Nanoscale, 2016, 8(45): 18928-18937. |
99 | CAO Y, JIANG X H, HAN W. Self-assembly pathways of β-sheet-rich amyloid-β(1-40) dimers: Markov state model analysis on millisecond hybrid-resolution simulations[J]. Journal of Chemical Theory and Computation, 2017, 13(11): 5731-5744. |
100 | YAMAUCHI M, OKUMURA H. Dimerization of α-synuclein fragments studied by isothermal-isobaric replica-permutation molecular dynamics simulation[J]. Journal of Chemical Information and Modeling, 2021, 61(3): 1307-1321. |
101 | YOON J, JANG S, LEE K, et al. Simulation studies on the stabilities of aggregates formed by fibril-forming segments of α-synuclein[J]. Journal of Biomolecular Structure & Dynamics, 2009, 27(3): 259-270. |
102 | GANGULY P, DO T D, LARINI L, et al. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3[J]. The Journal of Physical Chemistry B, 2015, 119(13): 4582-4593. |
103 | DONG X W, QI R X, QIAO Q, et al. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations[J]. Physical Chemistry Chemical Physics, 2021, 23(36): 20406-20418. |
104 | GUPTA A, DEY S, HICKS A, et al. Artificial intelligence guided conformational mining of intrinsically disordered proteins[J]. Communications Biology, 2022, 5: 610. |
105 | JIN Y M, JOHANNISSEN L O, HAY S. Predicting new protein conformations from molecular dynamics simulation conformational landscapes and machine learning[J]. Proteins: Structure, Function, and Bioinformatics, 2021, 89(8): 915-921. |
106 | BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732. |
107 | LI P L, BANJADE S, CHENG H C, et al. Phase transitions in the assembly of multivalent signalling proteins[J]. Nature, 2012, 483(7389): 336-340. |
108 | KATO M, HAN T W, XIE S H, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels[J]. Cell, 2012, 149(4): 753-767. |
109 | SHIN Y, BRANGWYNNE C P. Liquid phase condensation in cell physiology and disease[J]. Science, 2017, 357(6357): eaaf4382. |
110 | WIPPICH F, BODENMILLER B, TRAJKOVSKA M G, et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling[J]. Cell, 2013, 152(4): 791-805. |
111 | BRANGWYNNE C P, MITCHISON T J, HYMAN A A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(11): 4334-4339. |
112 | HAO L T, FULLER H R, LAM L T, et al. Absence of gemin5 from SMN complexes in nuclear Cajal bodies[J]. BMC Cell Biology, 2007, 8: 28. |
113 | HUR W Y, KEMP J P, TARZIA M, et al. CDK-regulated phase separation seeded by histone genes ensures precise growth and function of histone locus bodies[J]. Developmental Cell, 2020, 54(3): 379-394.e6. |
114 | ELBAUM-GARFINKLE S, KIM Y, SZCZEPANIAK K, et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23): 7189-7194. |
115 | HOFWEBER M, HUTTEN S, BOURGEOIS B, et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation[J]. Cell, 2018, 173(3): 706-719.e13. |
116 | ANDRÉ A A M, SPRUIJT E. Liquid-liquid phase separation in crowded environments[J]. International Journal of Molecular Sciences, 2020, 21(16): 5908. |
117 | LI Y C, GU J G, LIU C, et al. A high-throughput method for exploring the parameter space of protein liquid-liquid phase separation[J]. Cell Reports Physical Science, 2022, 3(3): 100764. |
118 | MOLLIEX A, TEMIROV J, LEE J H, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123-133. |
119 | LEE K H, ZHANG P P, KIM H J, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles[J]. Cell, 2016, 167(3): 774-788.e17. |
120 | SHARMA A M, THOMAS T L, WOODARD D R, et al. Tau monomer encodes strains[J]. eLife, 2018, 7: 37813. |
121 | MANN J R, GLEIXNER A M, MAUNA J C, et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43[J]. Neuron, 2019, 102(2): 321-338.e8. |
122 | CARTER G C, HSIUNG C H, SIMPSON L, et al. N-terminal domain of TDP43 enhances liquid-liquid phase separation of globular proteins[J]. Journal of Molecular Biology, 2021, 433(10): 166948. |
123 | HARDENBERG M C, SINNIGE T, CASFORD S, et al. Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies[J]. Journal of Molecular Cell Biology, 2021, 13(4): 282-294. |
124 | ALBERTI S, GLADFELTER A, MITTAG T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell, 2019, 176(3): 419-434. |
125 | BABINCHAK W M, SUREWICZ W K. Studying protein aggregation in the context of liquid-liquid phase separation using fluorescence and atomic force microscopy, fluorescence and turbidity assays, and FRAP[J]. Bio-protocol, 2020, 10(2): e3489. |
126 | BABINCHAK W M, SUREWICZ W K. Liquid-liquid phase separation and its mechanistic role in pathological protein aggregation[J]. Journal of Molecular Biology, 2020, 432(7): 1910-1925. |
127 | SHUSTER S O, LEE J C. Watching liquid droplets of TDP-43CTD age by Raman spectroscopy[J]. Journal of Biological Chemistry, 2022, 298(2): 101528. |
128 | AVNI A, JOSHI A, WALIMBE A, et al. Single-droplet surface-enhanced Raman scattering decodes the molecular determinants of liquid-liquid phase separation[J]. Nature Communications, 2022, 13: 4378. |
129 | SAWNER A S, RAY S, YADAV P, et al. Modulating α-synuclein liquid-liquid phase separation[J]. Biochemistry, 2021, 60(48): 3676-3696. |
130 | HUANG S, MO X L, WANG J Y, et al. α-Synuclein phase separation and amyloid aggregation are modulated by C-terminal truncations[J]. FEBS Letters, 2022, 596(11): 1388-1400. |
131 | XU B K, MO X L, CHEN J, et al. Myricetin inhibits α-synuclein amyloid aggregation by delaying the liquid-to-solid phase transition[J]. ChemBioChem, 2022, 23(16): e202200216. |
132 | LI H R, CHEN T C, HSIAO C L, et al. The physical forces mediating self-association and phase-separation in the C-terminal domain of TDP-43[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2018, 1866(2): 214-223. |
133 | LIN Y, ZHOU X M, KATO M, et al. Redox-mediated regulation of an evolutionarily conserved cross-β structure formed by the TDP43 low complexity domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28727-28734. |
134 | ZHOU X M, SUMROW L, TASHIRO K, et al. Mutations linked to neurological disease enhance self-association of low-complexity protein sequences[J]. Science, 2022, 377(6601): eabn5582. |
135 | GRUIJS DA SILVA L A, SIMONETTI F, HUTTEN S, et al. Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation[J]. The EMBO Journal, 2022, 41(8): e108443. |
136 | ZHANG X M, VIGERS M, MCCARTY J, et al. The proline-rich domain promotes Tau liquid-liquid phase separation in cells[J]. The Journal of Cell Biology, 2020, 219(11): e202006054. |
137 | AMBADIPUDI S, REDDY J G, BIERNAT J, et al. Residue-specific identification of phase separation hot spots of Alzheimer's-related protein Tau[J]. Chemical Science, 2019, 10(26): 6503-6507. |
138 | BOYKO X. QI X, CHEN T H,et al. Liquid-liquid phase separation of Tau protein: the crucial role of electrostatic interactions[J]. Journal of Biological Chemistry, 2019, 294(29): 11054-11059. |
139 | MAJUMDAR A, DOGRA P, MAITY S, et al. Liquid-liquid phase separation is driven by large-scale conformational unwinding and fluctuations of intrinsically disordered protein molecules[J]. The Journal of Physical Chemistry Letters, 2019, 10(14): 3929-3936. |
140 | RANE J S, KUMARI A, PANDA D. An acetylation mimicking mutation, K274Q, in Tau imparts neurotoxicity by enhancing Tau aggregation and inhibiting tubulin polymerization[J]. The Biochemical Journal, 2019, 476(10): 1401-1417. |
141 | BOYKO S, SUREWICZ K, SUREWICZ W K. Regulatory mechanisms of Tau protein fibrillation under the conditions of liquid-liquid phase separation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50): 31882-31890. |
142 | PATEL A, LEE H O, JAWERTH L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation[J]. Cell, 2015, 162(5): 1066-1077. |
143 | KANG J, LIM L, LU Y M, et al. A unified mechanism for LLPS of ALS/FTLD-causing FUS as well as its modulation by ATP and oligonucleic acids[J]. PLoS Biology, 2019, 17(6): e3000327. |
144 | HAN T W, KATO M, XIE S H, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies[J]. Cell, 2012, 149(4): 768-779. |
145 | DAROVIC S, PRPAR MIHEVC S, ŽUPUNSKI V, et al. Phosphorylation of C-terminal tyrosine residue 526 in FUS impairs its nuclear import[J]. Journal of Cell Science, 2015, 128(22): 4151-4159. |
146 | MONAHAN Z, RYAN V H, JANKE A M, et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity[J]. The EMBO Journal, 2017, 36(20): 2951-2967. |
147 | DHAKAL S, WYANT C E, GEORGE H E, et al. Prion-like C-terminal domain of TDP-43 and α-synuclein interact synergistically to generate neurotoxic hybrid fibrils[J]. Journal of Molecular Biology, 2021, 433(10): 166953. |
148 | GRACIA P, POLANCO D, TARANCÓN-DÍEZ J, et al. Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and Tau[J]. Nature Communications, 2022, 13: 4586. |
149 | BHOPATKAR A A, UVERSKY V N, RANGACHARI V. Granulins modulate liquid-liquid phase separation and aggregation of the prion-like C-terminal domain of the neurodegeneration-associated protein TDP-43[J]. The Journal of Biological Chemistry, 2020, 295(8): 2506-2519. |
150 | LIN Y, PROTTER D S, ROSEN M K, et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins[J]. Molecular Cell, 2015, 60(2): 208-219. |
151 | MAHARANA S, WANG J, PAPADOPOULOS D K, et al. RNA buffers the phase separation behavior of Prion-like RNA binding proteins[J]. Science, 2018, 360(6391): 918-921. |
152 | GRESE Z R, BASTOS A C, MAMEDE L D, et al. Specific RNA interactions promote TDP-43 multivalent phase separation and maintain liquid properties[J]. EMBO Reports, 2021, 22(12): e53632. |
153 | OVERBEEK J T G, VOORN M J. Phase separation in polyelectrolyte solutions. theory of complex coacervation[J]. Journal of Cellular and Comparative Physiology, 1957, 49(S1): 7-26. |
154 | NOTT T J, PETSALAKI E, FARBER P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles[J]. Molecular Cell, 2015, 57(5): 936-947. |
155 | LIN Y H, FORMAN-KAY J D, CHAN H S. Sequence-specific polyampholyte phase separation in membraneless organelles[J]. Physical Review Letters, 2016, 117(17): 178101. |
156 | WESSÉN J, PAL T, CHAN H S. Field theory description of ion association in re-entrant phase separation of polyampholytes[J]. The Journal of Chemical Physics, 2022, 156(19): 194903. |
157 | MCCARTY J, DELANEY K T, DANIELSEN S P O, et al. Complete phase diagram for liquid-liquid phase separation of intrinsically disordered proteins[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1644-1652. |
158 | DIGNON G L, ZHENG W W, KIM Y C, et al. Sequence determinants of protein phase behavior from a coarse-grained model[J]. PLoS Computational Biology, 2018, 14(1): e1005941. |
159 | DIGNON L G, ZHENG W W, MITTAL J. Simulation methods for liquid-liquid phase separation of disordered proteins[J]. Current Opinion in Chemical Engineering, 2019, 23: 92-98. |
160 | ASHBAUGH H S, HATCH H W. Natively unfolded protein stability as a coil-to-globule transition in charge/hydropathy space[J]. Journal of the American Chemical Society, 2008, 130(29): 9536-9542. |
161 | KIM Y C, HUMMER G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding[J]. Journal of Molecular Biology, 2008, 375(5): 1416-1433. |
162 | MURTHY A C, DIGNON G L, KAN Y, et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain[J]. Nature Structural & Molecular Biology, 2019, 26(7): 637-648. |
163 | CONICELLA A E, DIGNON G L, ZERZE G H, et al. TDP-43 α-helical structure tunes liquid-liquid phase separation and function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(11): 5883-5894. |
164 | REGY R M, DIGNON G L, ZHENG W W, et al. Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations[J]. Nucleic Acids Research, 2020, 48(22): 12593-12603. |
165 | BATSIS J A, BOATENG G G, SEO L M, et al. Development and usability assessment of a connected resistance exercise band application for strength-monitoring[J]. World Academy of Science, Engineering and Technology, 2019, 13(5): 340-348. |
166 | MISHRA A, SIPMA W, VEENHOFF L M, et al. The effect of FG-nup phosphorylation on NPC selectivity: a one-bead-per-amino-acid molecular dynamics study[J]. International Journal of Molecular Sciences, 2019, 20(3): 596. |
167 | DAS S, LIN Y H, VERNON R M, et al. Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28795-28805. |
168 | WOHL S, JAKUBOWSKI M, ZHENG W W. Salt-dependent conformational changes of intrinsically disordered proteins[J]. The Journal of Physical Chemistry Letters, 2021, 12(28): 6684-6691. |
169 | SANCHEZ-BURGOS I, ESPINOSA J R, JOSEPH J A, et al. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins[J]. PLoS Computational Biology, 2022, 18(2): e1009810. |
170 | DAS S, MUTHUKUMAR M. Microstructural organization in α-synuclein solutions[J]. Macromolecules, 2022, 55(11): 4228-4236. |
171 | NGUEMAHA V, ZHOU H X. Liquid-liquid phase separation of patchy particles illuminates diverse effects of regulatory components on protein droplet formation[J]. Scientific Reports, 2018, 8: 6728. |
172 | GHOSH A, MAZARAKOS K, ZHOU H X. Three archetypical classes of macromolecular regulators of protein liquid-liquid phase separation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19474-19483. |
173 | BENAYAD Z, VON BÜLOW S, STELZL L S, et al. Simulation of FUS protein condensates with an adapted coarse-grained model[J]. Journal of Chemical Theory and Computation, 2021, 17(1): 525-537. |
174 | TSANAI M, FREDERIX P W J M, SCHROER C F E, et al. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model[J]. Chemical Science, 2021, 12(24): 8521-8530. |
175 | TANG Y M, BERA S, YAO Y F, et al. Prediction and characterization of liquid-liquid phase separation of minimalistic peptides[J]. Cell Reports Physical Science, 2021, 2(9): 100579. |
176 | DONG X W, BERA S, QIAO Q, et al. Liquid-liquid phase separation of Tau protein is encoded at the monomeric level[J]. The Journal of Physical Chemistry Letters, 2021, 12(10): 2576-2586. |
177 | ZHENG W W, DIGNON G L, JOVIC N, et al. Molecular details of protein condensates probed by microsecond long atomistic simulations[J]. The Journal of Physical Chemistry B, 2020, 124(51): 11671-11679. |
178 | NING W S, GUO Y P, LIN S F, et al. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes[J]. Nucleic Acids Research, 2020, 48(D1): D288-D295. |
179 | LI Q, PENG X J, LI Y Q, et al. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro [J]. Nucleic Acids Research, 2020, 48(D1): D320-D327. |
180 | YOU K Q, HUANG Q, YU C Y, et al. PhaSepDB: a database of liquid-liquid phase separation related proteins[J]. Nucleic Acids Research, 2020, 48(D1): D354-D359. |
181 | HOU C, XIE H T, FU Y, et al. MloDisDB: a manually curated database of the relations between membraneless organelles and diseases[J]. Briefings in Bioinformatics, 2021, 22(4): bbaa271. |
182 | CHU X Q, SUN T L, LI Q, et al. Prediction of liquid-liquid phase separating proteins using machine learning[J]. BMC Bioinformatics, 2022, 23(1): 72. |
183 | VAN MIERLO G, JANSEN J R G, WANG J, et al. Predicting protein condensate formation using machine learning[J]. Cell Reports, 2021, 34(5): 108705. |
[1] | 黄鹤, 吴桐, 王闻达, 李佳珊, 孙黛雯, 叶启威, 龚新奇. 蛋白质复合物结构预测:方法与进展[J]. 合成生物学, 2023, 4(3): 507-523. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||