合成生物学 ›› 2024, Vol. 5 ›› Issue (6): 1518-1529.DOI: 10.12211/2096-8280.2024-025

• 特约评述 • 上一篇    

仿生分区室固定化多酶体系

董玲玲1, 李斐煊1, 雷航彬1, 宋启迪1, 王世珍1,2   

  1. 1.厦门大学化学化工学院化学工程与生物工程系,福建 厦门 361005
    2.厦门大学厦门市合成生物学重点实验室,福建 厦门 361005
  • 收稿日期:2024-03-19 修回日期:2024-06-20 出版日期:2024-12-31 发布日期:2025-01-10
  • 通讯作者: 王世珍
  • 作者简介:董玲玲(2000—),女,硕士研究生。研究方向为MOFs分层固定化多酶。E-mail:17852839170@126.com
    王世珍(1982—),女,副教授,硕士生导师。研究方向为合成生物学、生物催化与转化、酶工程等。E-mail:szwang@xmu.edu.cn
  • 基金资助:
    国家重点研发计划“合成生物学”重点专项“糖水氢电系统——体外多酶高效产氢及氢电装置的基础及工程研究”(2022YFA0912003);国家自然科学基金面上项目“氨基酸脱氢酶分子开关设计与生物电催化不对称还原研究”(22078273)

Biomimetic compartmentalization immobilization of multi-enzyme system

Lingling DONG1, Feixuan LI1, Hangbin LEI1, Qidi SONG1, Shizhen WANG1,2   

  1. 1.Department of Chemical and Biochemical Engineering,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,Fujian,China
    2.The Key Lab for Synthetic Biotechnology of Xiamen City,Xiamen University,Xiamen 361005,Fujian,China
  • Received:2024-03-19 Revised:2024-06-20 Online:2024-12-31 Published:2025-01-10
  • Contact: Shizhen WANG

摘要:

仿生分区室固定化多酶偶联是体外合成生物学的前沿技术,目的是实现多酶分区室固定化和反应的时空分离。与简单共固定化不同,仿生分区室固定化技术通过控制酶在载体上的空间分布,形成底物通道促进中间产物传递,并提高串联或偶联反应的系统稳定性、产率和产物纯度。本文综述了近年来仿生分区室固定化多酶体系的进展,包括金属有机框架(MOF)、聚合物囊泡和聚合物胶囊等固定化策略。MOF具有结构可控、功能易调控等优点,采用分级多孔、MOF-on-MOF和多种MOF组合等仿生策略构建分区室微反应器,可实现高效的体外多酶偶联催化反应。聚合物囊泡的膜结构可模拟天然磷脂双分子层,将多个小囊泡包封到大囊泡形成“囊泡中囊泡”模仿细胞器分区室固定化酶。聚合物胶囊是通过模板法形成的核壳纳米球体结构,结构稳定性优异,进一步通过层层自组装能够形成多层核壳结构实现分区室固定化。将来,微流控等技术与仿生分区室固定化多酶技术融合,将促进体外合成生物学和绿色生物制造等领域的发展。

关键词: 多酶偶联, 仿生分区室, 固定化酶, 金属有机框架, 聚合物囊泡, 聚合物胶囊

Abstract:

Biomimetic compartmentalization immobilization of multi-enzyme system is a frontier for in vitro synthetic biology, focusing on the spatial and temporal separation of reactions. Compared with simple co-immobilization, biomimetic compartmentalization immobilization can form substrate channels and promote the transmission of intermediates for sequential or coupling reaction. By controlling the relative positions of the enzymes on carriers, this method improves system stability, productivity, as well as purity of product. In this review, we summarized the recent advances of carriers for biomimetic compartmentalization immobilization of multi-enzyme systems, including metal-organic frameworks (MOFs), polymer vesicles and polymer capsules. Metal-organic frameworks (MOFs) are porous coordination materials which are composed of metal ions as nodes and organic linkers. MOFs possess unique characteristics including high porosity, large specific surface area and tunable structure, which are suitable for multi-enzyme systems. The strategies involving the hierarchically porous MOFs, MOF-on-MOF and multi-MOF combinations construct compartmentalized environments for efficient catalytic reactions in vitro. Polymer vesicles are hollow nanostructures composed of amphiphilic block copolymers. The membrane structure of polymer vesicles, similar to the natural phospholipid bilayers, has good mechanical stability and biocompatibility for protecting enzyme molecules, and provides unique microenvironment for sequential reactions. Multiple small vesicles were encapsulated into the larger vesicles to form a “vesicle-in-vesicle” by mimicking the structure of cellular organelles. Polymer capsules with a core-shell spherical nanostructure are formed by the templating method, and have structural stability and excellent shape controllability. Multilayered core-shell structures created by layer-by-layer self-assembly are applied for compartmentalized immobilization of multi-enzyme. In the future, the integration of microfluidic technologies with biomimetic compartmentalization immobilization of multi-enzyme is expected to provide highly efficient and stable multi-enzyme catalytic systems for in vitro synthetic biology and green biomanufacturing.

Key words: multi-enzyme coupling, compartmentalized biomimetic, immobilized enzyme, metal-organic frameworks, polymer vesicles, polymer capsules

中图分类号: