合成生物学 ›› 2020, Vol. 1 ›› Issue (3): 267-284.DOI: 10.12211/2096-8280.2020-040

• 特约评述 • 上一篇    下一篇

人工多细胞体系设计与构建研究进展

钱秀娟1, 陈琳1, 章文明1,2, 周杰1,2, 董维亮1,2, 信丰学1,2, 姜岷1,2   

  1. 1.南京工业大学材料化学工程国家重点实验室,江苏 南京 211816
    2.南京工业大学江苏先进生物与化学制造协同创新中心(SICAM),江苏 南京 211816
  • 收稿日期:2020-04-05 修回日期:2020-08-03 出版日期:2020-06-30 发布日期:2020-09-29
  • 通讯作者: 信丰学,姜岷
  • 作者简介:钱秀娟(1992—),女,博士,博士后,研究方向为代谢工程及合成生物学。E-mail:xiujuanqian@njtech.edu.cn|信丰学(1982—),男,博士,教授, 研究方向为生物化工与生物能源。E-mail:xinfengxue@njtech.edu.cn|姜岷(1972—),男,博士,教授,研究方向为生物转化与生物催化。E-mail:jiangmin@njtech.edu.cn
  • 基金资助:
    国家重点研发计划“合成生物学”重点专项(2018YFA0902200);国家自然科学基金项目(31961133017)

Recent research progress in the design and construction of synthetic microbial consortia

Xiujuan QIAN1, Lin CHEN1, Wenming ZHANG1,2, Jie ZHOU1,2, Weiliang DONG1,2, Fengxue XIN1,2, Min JIANG1,2   

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211816,Jiangsu,China
    2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM),Nanjing Tech University,Nanjing 211816,Jiangsu,China
  • Received:2020-04-05 Revised:2020-08-03 Online:2020-06-30 Published:2020-09-29
  • Contact: Fengxue XIN,Min JIANG

摘要:

合成生物学的发展正从优化基因元件与模块走向从头设计复杂代谢线路。多细胞体系因可实现代谢功能分工、复杂底物多组分利用及耐受复杂环境等,在医药、食品、化工、环境及能源等领域发挥着不可替代的作用,并已成为合成生物学发展的新方向。然而,多细胞体系的研究还处于起步阶段,理性设计与构建人工多细胞体系、解析细胞间信息互作机制及调控多细胞体系结构等方面还面临诸多挑战。本文综述了人工多细胞体系在医药开发与医疗健康、天然产物合成、木质纤维素一体化生物加工以及环境修复等领域的应用,总结了人工多细胞体系的构建原理,阐述了多细胞体系内细胞间的交流机制,并剖析了人工多细胞体系面临的诸多挑战以及针对性的解决方案,为构建系统鲁棒、稳定、可控的人工多细胞体系提供理论指导。

关键词: 人工多细胞体系, 医疗健康, 天然产物合成, 一体化生物加工, 环境修复, 交流机制, 菌群结构

Abstract:

Synthetic biology is developed from designing and building simple elements and modules to de novo buildup complex metabolic pathway and network. Recent advances in microbial consortia present a valuable approach for expanding the scope of synthetic biology. First, microbial consortia can create a novel microenvironment for strains, potentially resulting in the activation of silent metabolic pathways which are not expressed under "normal" cultivation conditions, leading to discovery of novel chemicals for novel drugs and other purposes; Second, microbial consortia allow a labor division for metabolic modules among different microbial strains, which permit improved efficiency and more complex behavior than monocultures; Third, microbial consortia consist of multiple functional microorganisms, allowing capability for utilizing complex substrate with robust tolerance to environmental stresses. All these endow microbial consortia an indispensible role in the areas of medicine, food, chemical engineering, energy industry and biodegradation for environmental pollutants. However, the study of synthetic microbial consortia is still in its infancy, facing many unknowns and challenges in the construction of stable and controllable microbial consortia systems, intercellular communication and regulation of microbial population structure. This review summarizes the application of synthetic microbial consortia in the areas of human health monitoring and medicine exploitation, synthesis of valuable compounds, consolidated bioprocessing of lignocellulosic materials and environmental bioremediation, as well as the construction principles and research methods for microbial consortia study. In addition, the unrevealed interaction mechanism underlying microbial consortia is addressed. Moreover, the outstanding challenges and future directions to advance the development of high-efficient, stable and controllable synthetic microbial consortia are highlighted.

Key words: synthetic microbial consortia, human health supervision, valuable compound synthesis, consolidated bioprocessing, environment bioremediation, interaction mechanism, microbial population structure

中图分类号: