1 |
GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342.
|
2 |
ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338.
|
3 |
SLUSARCZYK A L, LIN A, WEISS R. Foundations for the design and implementation of synthetic genetic circuits[J]. Nature Reviews Genetics, 2012, 13(6): 406-420.
|
4 |
KOBAYASHI T, CHEN L N, AIHARA K. Modeling genetic switches with positive feedback loops[J]. Journal of Theoretical Biology, 2003, 221(3): 379-399.
|
5 |
WANG R Q, JING Z J, CHEN L N. Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems[J]. Bulletin of Mathematical Biology, 2005, 67(2): 339-367.
|
6 |
GOLDBETER A. A model for circadian oscillations in the Drosophila period protein (PER)[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1995, 261(1362): 319-324.
|
7 |
SMOLEN P, BAXTER D A, BYRNE J H. Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems[J]. The American Journal of Physiology, 1998, 274(2): C531-C542.
|
8 |
WOLF D M, EECKMAN F H. On the relationship between genomic regulatory element organization and gene regulatory dynamics[J]. Journal of Theoretical Biology, 1998, 195(2): 167-186.
|
9 |
LIPSHTAT A, LOINGER A, BALABAN N Q, et al. Genetic toggle switch without cooperative binding[J]. Physical Review Letters, 2006, 96(18): 188101.
|
10 |
WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos[M/OL]. New York, NY: Springer New York, 1990[2022-12-30]. .
|
11 |
CHEN L N, WANG R Q, LI C G, et al. Modeling biomolecular networks in cells: structures and dynamics[M/OL]. London: Springer, 2010[2022-12-30]. .
|
12 |
SNOUSSI H EL, THOMAS R. Logical identification of all steady states: the concept of feedback loop characteristic states[J]. Bulletin of Mathematical Biology, 1993, 55(5): 973-991.
|
13 |
THOMAS R. The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix[J]. Berichte der Bunsengesellschaft Für Physikalische Chemie, 1994, 98(9): 1148-1151.
|
14 |
ANGELI D, FERRELL J E JR, SONTAG E D. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 1822-1827.
|
15 |
GOSSEN M, BUJARD H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12): 5547-5551.
|
16 |
LOU C B, LIU X L, NI M, et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch[J]. Molecular Systems Biology, 2010, 6: 350.
|
17 |
CHEN S B, ZHANG H Q, SHI H D, et al. Automated design of genetic toggle switches with predetermined bistability[J]. ACS Synthetic Biology, 2012, 1(7): 284-290.
|
18 |
ZHU R J, DEL RIO-SALGADO J M, GARCIA-OJALVO J, et al. Synthetic multistability in mammalian cells[J]. Science, 2022, 375(6578): eabg9765.
|
19 |
DEANS T L, CANTOR C R, COLLINS J J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells[J]. Cell, 2007, 130(2): 363-372.
|
20 |
FRANKO N, TEIXEIRA A P, XUE S, et al. Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates[J]. Nature Communications, 2021, 12: 6786.
|
21 |
娄春波, 杜沛, 孟凡康, 等. 人工基因线路的研究进展和未来挑战[J]. 中国科学院院刊, 2018, 33(11): 1158-1165.
|
|
LOU C B, DU P, MENG F K, et al. Development and challenges of synthetic genetic circuits[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1158-1165.
|
22 |
STRICKER J, COOKSON S, BENNETT M R, et al. A fast, robust and tunable synthetic gene oscillator[J]. Nature, 2008, 456(7221): 516-519.
|
23 |
THOMAS R, THIEFFRY D, KAUFMAN M. Dynamical behaviour of biological regulatory networks—Ⅰ. Biological role of feedback loops and practical use of the concept of the loop-characteristic state[J]. Bulletin of Mathematical Biology, 1995, 57(2): 247-276.
|
24 |
MACDONALD N. Biological delay systems: linear stability theory[M/OL]. Cambridge: Cambridge University Press, 1989[2022-12-30]. .
|
25 |
WANG R Q, CHEN L N, AIHARA K. Construction of genetic oscillators with interlocked feedback networks[J]. Journal of Theoretical Biology, 2006, 242(2): 454-463.
|
26 |
GONZE D, RUOFF P. The Goodwin oscillator and its legacy[J]. Acta Biotheoretica, 2021, 69(4): 857-874.
|
27 |
O'BRIEN E L, VAN ITALLIE E, BENNETT M R. Modeling synthetic gene oscillators[J]. Mathematical Biosciences, 2012, 236(1): 1-15.
|
28 |
NOVÁK B, TYSON J J. Design principles of biochemical oscillators[J]. Nature Reviews Molecular Cell Biology, 2008, 9(12): 981-991.
|
29 |
TSAI T Y C, CHOI Y S, MA W Z, et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops[J]. Science, 2008, 321(5885): 126-129.
|
30 |
MAEDA K, KURATA H. Long negative feedback loop enhances period tunability of biological oscillators[J]. Journal of Theoretical Biology, 2018, 440: 21-31.
|
31 |
WANG R Q, CHEN L N, AIHARA K. Detection of cellular rhythms and global stability within interlocked feedback systems[J]. Mathematical Biosciences, 2007, 209(1): 171-189.
|
32 |
HASTY J, ISAACS F, DOLNIK M, et al. Designer gene networks: towards fundamental cellular control[J]. Chaos, 2001, 11(1): 207-220.
|
33 |
CHEN L N, AIHARA K. A model of periodic oscillation for genetic regulatory systems[J]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2002, 49(10): 1429-1436.
|
34 |
WANG R, ZHOU T, JING Z, et al. Modelling periodic oscillation of biological systems with multiple timescale networks[J]. Systems Biology, 2004, 1(1): 71-84.
|
35 |
CILIBERTO A, CAPUANI F, TYSON J J. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation[J]. PLoS Computational Biology, 2007, 3(3): e45.
|
36 |
TURANYI T, TOMLIN A S, PILLING M J. On the error of the quasi-steady-state approximation[J]. The Journal of Physical Chemistry, 1993, 97(1): 163-172.
|
37 |
STELLING J, SAUER U, SZALLASI Z, et al. Robustness of cellular functions[J]. Cell, 2004, 118(6): 675-685.
|
38 |
PURCELL O, SAVERY N J, GRIERSON C S, et al. A comparative analysis of synthetic genetic oscillators[J]. Journal of the Royal Society, Interface, 2010, 7(52): 1503-1524.
|
39 |
LI Z D, LIU S X, YANG Q. Incoherent inputs enhance the robustness of biological oscillators[J]. Cell Systems, 2017, 5(1): 72-81.e4.
|
40 |
STELLING J, GILLES E D, F J Ⅲ DOYLE. Robustness properties of circadian clock architectures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(36): 13210-13215.
|
41 |
BAUM K, POLITI A Z, KOFAHL B, et al. Feedback, mass conservation and reaction kinetics impact the robustness of cellular oscillations[J]. PLoS Computational Biology, 2016, 12(12): e1005298.
|
42 |
HU C Y, MURRAY R M. Layered feedback control overcomes performance trade-off in synthetic biomolecular networks[J]. Nature Communications, 2022, 13: 5393.
|
43 |
KUZNETSOV Y A. Elements of applied bifurcation theory[M/OL]. New York, NY: Springer New York, 1995[2022-12-30]. .
|
44 |
MILLER M B, BASSLER B L. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001, 55: 165-199.
|
45 |
WANG R Q, LI C G, CHEN L N, et al. Modeling and analyzing biological oscillations in molecular networks[J]. Proceedings of the IEEE, 2008, 96(8): 1361-1385.
|
46 |
YOU L C, COX R S, WEISS R, et al. Programmed population control by cell–cell communication and regulated killing[J]. Nature, 2004, 428(6985): 868-871.
|
47 |
WINFREE A T. Biological rhythms and the behavior of populations of coupled oscillators[J]. Journal of Theoretical Biology, 1967, 16(1): 15-42.
|
48 |
PIKOVSKY A, ROSENBLUM M, KURTHS J. Synchronization: a universal concept in nonlinear sciences[M/OL]. Cambridge: Cambridge University Press, 2001[2022-12-30]. .
|
49 |
ZHOU T S, CHEN L N, AIHARA K. Molecular communication through stochastic synchronization induced by extracellular fluctuations[J]. Physical Review Letters, 2005, 95(17): 178103.
|
50 |
CHEN L N, WANG R Q, ZHOU T S, et al. Noise-induced cooperative behavior in a multicell system[J]. Bioinformatics, 2005, 21(11): 2722-2729.
|
51 |
WANG R Q, CHEN L N. Synchronizing genetic oscillators by signaling molecules[J]. Journal of Biological Rhythms, 2005, 20(3): 257-269.
|
52 |
WANG R Q, CHEN L N, AIHARA K. Synchronizing a multicellular system by external input: an artificial control strategy[J]. Bioinformatics, 2006, 22(14): 1775-1781.
|
53 |
DANINO T, MONDRAGÓN-PALOMINO O, TSIMRING L, et al. A synchronized quorum of genetic clocks[J]. Nature, 2010, 463(7279): 326-330.
|
54 |
MCMILLEN D, KOPELL N, HASTY J, et al. Synchronizing genetic relaxation oscillators by intercell signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 679-684.
|
55 |
GARCIA-OJALVO J, ELOWITZ M B, STROGATZ S H. Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10955-10960.
|
56 |
WAGEMAKERS A, BULDÚ J M, GARCÍA-OJALVO J, et al. Synchronization of electronic genetic networks[J]. Chaos, 2006, 16(1): 013127.
|
57 |
BASU S, GERCHMAN Y, COLLINS C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134.
|
58 |
MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827.
|
59 |
ALON U. Network motifs: theory and experimental approaches[J]. Nature Reviews Genetics, 2007, 8(6): 450-461.
|
60 |
MA W Z, TRUSINA A, EL-SAMAD H, et al. Defining network topologies that can achieve biochemical adaptation[J]. Cell, 2009, 138(4): 760-773.
|
61 |
ZHANG X P, LIU F, CHENG Z, et al. Cell fate decision mediated by p53 pulses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12245-12250.
|
62 |
NASERI G, KOFFAS M A G. Application of combinatorial optimization strategies in synthetic biology[J]. Nature Communications, 2020, 11: 2446.
|
63 |
RADIVOJEVIĆ T, COSTELLO Z, WORKMAN K, et al. A machine learning Automated Recommendation Tool for synthetic biology[J]. Nature Communications, 2020, 11: 4879.
|
64 |
KARKARIA B D, Manhart A, FEDOREC A J H, et al. Chaos in synthetic microbial communities[J]. PLoS Computational Biology, 2022, 18(10): e1010548.
|