合成生物学 ›› 2025, Vol. 6 ›› Issue (1): 18-44.DOI: 10.12211/2096-8280.2023-040

• 特约评述 • 上一篇    下一篇

液体生物燃料合成与炼制的研究进展

郭姝媛1,2(), 张倩楠1,2, 姑丽克孜·买买提热夏提1,2, 杨一群1,2, 于涛1,2   

  1. 1.中国科学院深圳先进技术研究院,深圳合成生物学创新研究院,合成生物化学研究中心,广东 深圳 518055
    2.中国科学院深圳先进技术研究院,深圳合成生物学创新研究院,中国科学院定量工程生物学重点实验室,广东 深圳 518055
  • 收稿日期:2023-06-13 修回日期:2024-01-30 出版日期:2025-01-31 发布日期:2025-03-12
  • 通讯作者: 郭姝媛,于涛
  • 作者简介:郭姝媛(1991—),女,博士,助理研究员。研究方向为甲醇生物转化及产物合成。E-mail:sy.guo@siat.ac.cn
    于涛(1986—),男,博士,研究员。研究方向为酿酒酵母的合成生物学。E-mail:tao.yu@siat.ac.cn
  • 基金资助:
    国家重点研发计划(2021YFA0911000);广东省重点区域研究与发展计划项目(2022B1111080005);国家自然科学基金(NSFC32071416);深圳合成生物学创新研究院科研基金(JCHZ20200003);深圳市科技计划(ZDSYS20210623091810032);中国科学院战略重点研究项目(XDB0480000);招商局集团先进技术研究院有限公司(基于电催化CO2转化与生物炼制的绿色制造项目);中海石油化学股份有限公司和海洋石油富岛有限公司“碳中和与粮食安全交叉创新联合实验室”项目;深圳先进院跨所联合攻关青年团队项目(电驱动CO2转化与生物炼制规模化示范)

Advances in microbial production of liquid biofuels

Shuyuan GUO1,2(), Qiannan ZHANG1,2, Gulikezi·MAIMAITIREXIATI1,2, Yiqun YANG1,2, Tao YU1,2   

  1. 1.Center for Synthetic Biochemistry,Shenzhen Institute of Synthetic Biology,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences (CAS),Shenzhen 518055,Guangdong,China
    2.CAS key laboratory of Quantitative Engineering Biology,Shenzhen Institute of Synthetic Biology,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences (CAS),Shenzhen 518055,Guangdong,China
  • Received:2023-06-13 Revised:2024-01-30 Online:2025-01-31 Published:2025-03-12
  • Contact: Shuyuan GUO, Tao YU

摘要:

人类社会发展对化石燃料的依赖导致了资源枯竭的加剧及显著的气候变化,迫切需要开发能够代替化石燃料的新型生物燃料。虽然已有生物乙醇和生物柴油等生物能源,但其生产规模和成本仍然是大规模应用的主要问题。近年来,随着可再生能源技术的发展,结合代谢工程及新兴的合成生物学,开发基于CO2合成的新兴生物燃料,逐渐成为未来绿色能源的重要研究方向。本文综述了生物燃料的种类及四代生物燃料的发展情况,并着重介绍了第三代和第四代生物燃料丰富的底物原材料、多能源偶联合成生物燃料的研究现状、合成生物学在其中的应用及现阶段的研究进展。最后概括了合成生物燃料所面临的困境,主要包括原料的供应及成本,新型液体生物燃料产量低和产品种类少等问题,并提出相应的解决办法,以二氧化碳作为主要原材料,结合自养型微生物及甲基营养型微生物等细胞工厂,通过优选固碳途径、转化二氧化碳为甲醇等低碳底物及多能源耦合等方式实现多种生物燃料的合成,以期扩大生物燃料的产能及应用范围,进一步推动新型生物燃料的产业化进程。

关键词: 合成生物燃料, 新型生物能源, 一碳底物, 可再生能源, 微生物代谢工程

Abstract:

With the socioeconomic development, the dependence of human beings on fossil fuels has led to their shortage and climate change. This has created an urgent need for alternatives that are renewable and environmentally friendly, and biofuels are one of them. Nowadays, widely recognized biofuels like fuel ethanol and biodiesel face challenges in terms of their production capacity due to limitation on raw materials such as grains and edible oils and high cost as well. Hence, the integration of metabolic engineering and synthetic biology has opened avenues for utilizing diverse substrates from other renewable sources, such as solar energy, light energy, electric energy, and waste biomass. Microbial cell factories, including microalgae, bacteria, and yeast, play a crucial role in synthesizing biofuels. The review comments on the evolution of the four generations of biofuels, encompassing fuel ethanol, biodiesel, bio-gasoline, jet and aviation fuels. We also discuss how microorganisms can be explored for producing the third- and fourth-generation biofuels from a variety of unconventional substrates such as carbon dioxide, methanol, and methane, multi-energy coupling to synthesize biofuels from lignocellulose by bacterial or yeast, CO2 conversion by microalgae or electrochemical-biological systems, the conversion of methanol and methane by methyltrophic microbes, and the application of synthetic biology. Furthermore, we overview biosynthetic pathways and engineering strategies for optimizing biofuels production. These strategies can convert raw materials to various fuel products, including fatty acids and esters, advanced alcohols and esters, isoprenoids, and polyketides. Finally, we highlight some challenges in biofuels production, including raw material supply and cost issue, low production yield, and limited product variety. Meanwhile, to address these challenges, we propose corresponding solutions. For example, by optimizing carbon fixation pathways, and converting carbon dioxide into low-carbon substrates like methanol, autotrophic microorganisms, methylotrophic microorganisms, and other cell factories can utilize carbon dioxide as the major raw material to synthesize various biofuels, which can benefit the application of biofuels and further promote their industrial production.

Key words: synthetic biofuels, new bioenergy, one-carbon substrates, renewable energy, microbial metabolic engineering

中图分类号: