合成生物学 ›› 2024, Vol. 5 ›› Issue (5): 1211-1226.DOI: 10.12211/2096-8280.2024-024

• 特约评述 • 上一篇    

重编程微生物底盘用于PHA材料的定制化低成本生物合成

陈国强1(), 谭丹2   

  1. 1.清华大学生命科学学院,化学工程系,合成与系统生物学中心,北京 100084
    2.西安交通大学生命科学与技术学院,生物医学信息工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2024-03-19 修回日期:2024-06-08 出版日期:2024-10-31 发布日期:2024-11-20
  • 通讯作者: 陈国强
  • 作者简介:陈国强(1963—),男,教授,博士生导师。研究方向为生物合成PHA材料及其下一代工业生物技术。 E-mail:chengq@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金(32130001);国家重点研发计划“合成生物学”重点专项(2018YFA0900200)

Reprogramming microbial chassis for low-cost bioprodcution of tailor-made polyhydroxyalkanoates

Guo-Qiang CHEN1(), Dan TAN2   

  1. 1.School of Life Sciences,Center for Synthetic and Systems Biology (CSSB),Department of Chemical Engineering,Tsinghua University,Beijing 100084,China
    2.Key Laboratory of Biomedical Information Engineering of Ministry of Education,School of Life Science and Technology,Xi'an Jiaotong University,Xi'an 710049,Shaanxi,China
  • Received:2024-03-19 Revised:2024-06-08 Online:2024-10-31 Published:2024-11-20
  • Contact: Guo-Qiang CHEN

摘要:

合成生物学为新材料合成提供了无限可能,将为材料学带来变革性影响。环境友好型材料聚羟基脂肪酸酯(PHA)作为合成生物学与材料学深度融合的产物,是微生物胞内合成一类线性高分子聚酯,被认为可部分替代传统化学塑料。PHA含有至少150种单体,其组成、结构及性能的多样性带来了广泛的应用前景,形成了PHA家族或组学。PHA在学术界和产业界已深入研究了30多年,其中个别PHA材料已实现了商业化生产。利用合成生物学和代谢工程重新编程高性能微生物底盘细胞,并控制不同前体底物比例,可实现具有不同结构和性能的PHA材料的定制化合成。下一代工业生物技术是基于嗜盐微生物的节能节水的连续无灭菌开放式工业发酵工艺,能大幅度降低生产成本,更推动了PHA材料的低成本规模化生产。本文就PHA家族的组成以及工程化微生物底盘利用下一代工业生物技术高效低成本地合成多样化的PHA材料方面的进展做一简要综述,将重点介绍PHA家族的单体组成、材料性能和包含塑料、医用、能源、智能材料等领域的PHA应用价值链,以及重编程的假单胞菌和嗜盐单胞菌在PHA定制化低成本合成中的一些工程化技术和成果、产业化应用情况,并针对如何进一步降低生产成本及提高材料性能进行探讨。本文对基于合成生物学的生物材料定制化合成研究有重要参考价值。

关键词: 聚羟基脂肪酸酯, 聚3-羟基丁酸酯, 定制化材料, 嗜盐单胞菌, 下一代工业生物技术, PHA组学

Abstract:

Synthetic biology offers boundless possibilities and revolutionary changes to material fields. One remarkable outcome of interdisciplinary integration of synthetic biology and material science is the development of environmentally friendly polyhydroxyalkanoates (PHAs), which serve as ideal alternatives to petroleum-based plastics. PHAs are a family of linear biopolyesters synthesized by various microorganisms as their intracellular storage materials for energy and carbon sources. With at least 150 various monomers, PHAs exhibit diverse structures, material properties, and applications, collectively known as “PHAomics”. When reprograming microbial genomes via synthetic biology and metabolic engineering, in combination with the feeding of special precursors, tailor-made PHAs with defined structures and varied properties can be synthesized. PHAs has been extensively studied in both academia and industry in the last few decades, leading to the commercialization of some PHAs. Next generation industrial biotechnology (NGIB) based on halophilic Halomonas spp. as chassis has been developed to overcome the limitations of current industrial biotechnology. NGIB offers a long lasting, open and continuous, energy and freshwater-saving bioprocess using low-cost mixed substrates and allows morphology engineering for simplified downstream processing. NGIB facilitates low-cost production of various PHAs in large scale. This review introduces PHAomics and summarizes the diverse properties of PHAs produced via NGIB. It primarily focuses on the composition, structure, and material properties of PHAs, as well as their extensive applications in biodegradable plastics, medical implants, medicine, drug delivery carriers, energy sources, and potential smart materials. Additionally, it covers the strategies and tools for strain engineering and their achievements in the tailor-made biosynthesis of PHA using reprogrammed Pseudomonas spp. and Halomonas spp. Finally, this review discusses strategies on how to further reduce the production cost and improve material properties of PHAs. This review summarizes the progresses on the low-cost customized synthesis of PHA biomaterials by synthetic biology, demonstrating the integration of biology and chemistry.

Key words: PHA, PHB, tailor-made materials, Halomonas, NGIB, PHAomics

中图分类号: