合成生物学 ›› 2025, Vol. 6 ›› Issue (3): 516-531.DOI: 10.12211/2096-8280.2024-096
姜源旭1,2, 范盈盈1, 魏平1,2
收稿日期:
2024-12-18
修回日期:
2025-03-04
出版日期:
2025-06-30
发布日期:
2025-06-27
通讯作者:
魏平
作者简介:
基金资助:
JIANG Yuanxu1,2, FAN Yingying1, WEI Ping1,2
Received:
2024-12-18
Revised:
2025-03-04
Online:
2025-06-30
Published:
2025-06-27
Contact:
WEI Ping
摘要:
振荡现象在各类生物体系中发挥着关键的生理功能。自20世纪50年代以来,学界就已经开始了关于生物振荡成因的理论探索。进入21世纪,三抑制振荡子(repressilator)系统的人工合成,标志着现代合成生物学的开端,也标志着人工合成生物振荡的研究开启了黄金时代。本文将回顾本领域近二十余年的发展成果,从设计原理、人工合成与实际应用三个方面加以论述。生物振荡产生的三个主要条件是负反馈网络结构、足够长的时间延迟和非线性调控关系;通过调整网络拓扑结构或引入外界周期信号,可以提升振荡的可调性与稳定性。最早的合成振荡系统完全基于转录调控,而时至今日,在蛋白、代谢乃至多细胞群体水平的合成振荡都已实现。这种人工合成的振荡系统将有助于调控种群生长、提高发酵效率、影响细胞命运,并有望为免疫治疗提供全新的思路。
中图分类号:
姜源旭, 范盈盈, 魏平. 生物振荡的设计原理与人工合成[J]. 合成生物学, 2025, 6(3): 516-531.
JIANG Yuanxu, FAN Yingying, WEI Ping. Design principles and artificial synthesis of biological oscillators[J]. Synthetic Biology Journal, 2025, 6(3): 516-531.
20 | CHEN C, LIU S, SHI X Q, et al. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions[J]. Nature, 2017, 542(7640): 210-214. |
21 | SHNIDERMAN E, AVRAHAM Y, SHAHAL S, et al. How synchronized human networks escape local minima[J]. Nature Communications, 2024, 15(1): 9298. |
22 | GONZALO COGNO S, OBENHAUS H A, LAUTRUP A, et al. Minute-scale oscillatory sequences in medial entorhinal cortex[J]. Nature, 2024, 625(7994): 338-344. |
23 | FITZHUGH R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations[J]. The Journal of General Physiology, 1960, 43(5): 867-896. |
24 | HAMILL O P. Arterial pulses link heart-brain oscillations[J]. Science, 2024, 383(6682): 482-483. |
25 | SARFATI R, HAYES J C, SARFATI É, et al. Spatio-temporal reconstruction of emergent flash synchronization in firefly swarms via stereoscopic 360-degree cameras[J]. Journal of the Royal Society, Interface, 2020, 17(170): 20200179. |
26 | MIROLLO R E, STROGATZ S H. Synchronization of pulse-coupled biological oscillators[J]. SIAM Journal on Applied Mathematics, 1990, 50(6): 1645-1662. |
27 | JONES D L, JONES R L, RATNAM R. Calling dynamics and call synchronization in a local group of unison bout callers[J]. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200(1): 93-107. |
28 | ELOWITZ M, LIM W A. Build life to understand it[J]. Nature, 2010, 468(7326): 889-890. |
29 | RICHTER P H, ROSS J. Concentration oscillations and efficiency: glycolysis[J]. Science, 1981, 211(4483): 715-717. |
30 | PYE K, CHANCE B. Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis [J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 55(4): 888-894. |
31 | CAO Y S, WANG H L, OUYANG Q, et al. The free energy cost of accurate biochemical oscillations[J]. Nature Physics, 2015, 11(9): 772-778. |
32 | ZHANG D L, CAO Y S, OUYANG Q, et al. The energy cost and optimal design for synchronization of coupled molecular oscillators[J]. Nature Physics, 2020, 16(1): 95-100. |
33 | HIGGINS J. Theory of oscillating reactions[J]. Industrial & Engineering Chemistry, 1967, 59: 19-62. |
34 | NOVÁK B, TYSON J J. Design principles of biochemical oscillators[J]. Nature Reviews Molecular Cell Biology, 2008, 9(12): 981-991. |
35 | FERRELL J E JR. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle[J]. Current Opinion in Cell Biology, 2013, 25(6): 676-686. |
36 | GOLDBETER A, BERRIDGE M J. Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour[M/OL]. Cambridge, UK: Cambridge University Press, 1996[2024-11-01]. . |
37 | THOMAS R. On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations[C/OL]//DELLA DORA J, DEMONGEOT J, LACOLLE B. Numerical methods in the study of critical phenomena. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981: 180-193 [2024-11-01]. . |
38 | FRANÇOIS P, HAKIM V. Design of genetic networks with specified functions by evolution in silico [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(2): 580-585. |
39 | ROSENFELD N, ELOWITZ M B, ALON U. Negative autoregulation speeds the response times of transcription networks[J]. Journal of Molecular Biology, 2002, 323(5): 785-793. |
40 | GRÖNLUND A, LÖTSTEDT P, ELF J. Transcription factor binding kinetics constrain noise suppression via negative feedback[J]. Nature Communications, 2013, 4: 1864. |
41 | MONK N A M. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays[J]. Current Biology, 2003, 13(16): 1409-1413. |
42 | SWINBURNE I A, MIGUEZ D G, LANDGRAF D, et al. Intron length increases oscillatory periods of gene expression in animal cells[J]. Genes & Development, 2008, 22(17): 2342-2346. |
43 | RUÉ P, GARCIA-OJALVO J. Modeling gene expression in time and space[J]. Annual Review of Biophysics, 2013, 42: 605-627. |
44 | KHOLODENKO B N. Cell-signalling dynamics in time and space[J]. Nature Reviews Molecular Cell Biology, 2006, 7(3): 165-176. |
1 | REPPERT S M, WEAVER D R. Coordination of circadian timing in mammals[J]. Nature, 2002, 418(6901): 935-941. |
2 | KORONOWSKI K B, SASSONE-CORSI P. Communicating clocks shape circadian homeostasis[J]. Science, 2021, 371(6530): eabd0951. |
3 | KÖBLER C, SCHMELLING N M, WIEGARD A, et al. Two KaiABC systems control circadian oscillations in one Cyanobacterium [J]. Nature Communications, 2024, 15(1): 7674. |
4 | NAKAJIMA M, IMAI K, ITO H, et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro [J]. Science, 2005, 308(5720): 414-415. |
5 | FERRELL J E JR, TSAI T Y, YANG Q. Modeling the cell cycle: why do certain circuits oscillate?[J]. Cell, 2011, 144(6): 874-885. |
6 | POMERENING J R, KIM S Y, FERRELL J E JR. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations[J]. Cell, 2005, 122(4): 565-578. |
7 | CHANG J B, FERRELL J E JR. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle[J]. Nature, 2013, 500(7464): 603-607. |
8 | MOJICA-BENAVIDES M, VAN NIEKERK D D, MIJALKOV M, et al. Intercellular communication induces glycolytic synchronization waves between individually oscillating cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6): e2010075118. |
9 | BETZ A, BECKER J U. Phase dependent phase shifts induced by pyruvate and acetaldehyde in oscillating NADH of yeast cells[J]. Journal of Interdisciplinary Cycle Research, 1975, 6(2): 167-173. |
10 | RICHARD P, BAKKER B M, TEUSINK B, et al. Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells[J]. European Journal of Biochemistry, 1996, 235(1-2): 238-241. |
11 | YOSHIOKA-KOBAYASHI K, MATSUMIYA M, NIINO Y, et al. Coupling delay controls synchronized oscillation in the segmentation clock[J]. Nature, 2020, 580(7801): 119-123. |
12 | DIAZ-CUADROS M, WAGNER D E, BUDJAN C, et al. In vitro characterization of the human segmentation clock[J]. Nature, 2020, 580(7801): 113-118. |
13 | SONNEN K F, LAUSCHKE V M, URAJI J, et al. Modulation of phase shift between Wnt and Notch signaling oscillations controls mesoderm segmentation[J]. Cell, 2018, 172(5): 1079-1090. e12. |
45 | PURVIS J E, LAHAV G. Encoding and decoding cellular information through signaling dynamics[J]. Cell, 2013, 152(5): 945-956. |
46 | CHENG Q J, OHTA S, SHEU K M, et al. NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages[J]. Science, 2021, 372(6548): 1349-1353. |
47 | MANGAN S, ZASLAVER A, ALON U. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks[J]. Journal of Molecular Biology, 2003, 334(2): 197-204. |
48 | MANGAN S, ALON U. Structure and function of the feed-forward loop network motif[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 11980-11985. |
49 | HAO N, O’SHEA E K. Signal-dependent dynamics of transcription factor translocation controls gene expression[J]. Nature Structural & Molecular Biology, 2011, 19(1): 31-39. |
50 | CHEN S Y, OSIMIRI L C, CHEVALIER M, et al. Optogenetic control reveals differential promoter interpretation of transcription factor nuclear translocation dynamics[J]. Cell Systems, 2020, 11(4): 336-353. e24. |
51 | STRICKER J, COOKSON S, BENNETT M R, et al. A fast, robust and tunable synthetic gene oscillator[J]. Nature, 2008, 456(7221): 516-519. |
52 | GOODWIN B C. Temporal organization in cells. A dynamic theory of cellular control processes[M]. London: Academic Press, 1963. |
53 | TSAI T Y, CHOI Y S, MA W Z, et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops[J]. Science, 2008, 321(5885): 126-129. |
54 | TOMAZOU M, BARAHONA M, POLIZZI K M, et al. Computational re-design of synthetic genetic oscillators for independent amplitude and frequency modulation[J]. Cell Systems, 2018, 6(4): 508-520. e5. |
55 | ZHANG F Y, SUN Y H, ZHANG Y H, et al. Independent control of amplitude and period in a synthetic oscillator circuit with modified repressilator[J]. Communications Biology, 2022, 5(1): 23. |
56 | HELTBERG M S, JIANG Y X, FAN Y Y, et al. Coupled oscillator cooperativity as a control mechanism in chronobiology[J]. Cell Systems, 2023, 14(5): 382-391. e5. |
57 | ZHANG Z B, WANG Q Y, KE Y X, et al. Design of tunable oscillatory dynamics in a synthetic NF-κB signaling circuit[J]. Cell Systems, 2017, 5(5): 460-470. e5. |
58 | ELOWITZ M B, LEVINE A J, SIGGIA E D, et al. Stochastic gene expression in a single cell[J]. Science, 2002, 297(5584): 1183-1186. |
59 | MCADAMS H H, ARKIN A. Stochastic mechanisms in gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3): 814-819. |
60 | GAMMAITONI L, HÄNGGI P, JUNG P, et al. Stochastic resonance[J]. Reviews of Modern Physics, 1998, 70(1): 223. |
61 | PIKOVSKY A S, KURTHS J. Coherence resonance in a noise-driven excitable system[J]. Physical Review Letters, 1997, 78(5): 775-778. |
62 | KELLOGG R A, TAY S. Noise facilitates transcriptional control under dynamic inputs[J]. Cell, 2015, 160(3): 381-392. |
63 | SIEBER J, OMEL’CHENKO O E, WOLFRUM M. Controlling unstable chaos: stabilizing chimera states by feedback[J]. Physical Review Letters, 2014, 112(5): 054102. |
64 | HASTY J, PRADINES J, DOLNIK M, et al. Noise-based switches and amplifiers for gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(5): 2075-2080. |
65 | POTVIN-TROTTIER L, LORD N D, VINNICOMBE G, et al. Synchronous long-term oscillations in a synthetic gene circuit[J]. Nature, 2016, 538(7626): 514-517. |
66 | QIAO L X, ZHANG Z B, ZHAO W, et al. Network design principle for robust oscillatory behaviors with respect to biological noise[J]. eLife, 2022, 11: e76188. |
67 | ZORZAN I, LÓPEZ A R, MALYSHAVA A, et al. Synthetic designs regulating cellular transitions: fine-tuning of switches and oscillators[J]. Current Opinion in Systems Biology, 2021, 25: 11-26. |
68 | Ⅰ ARNOL'D V. Small denominators. Ⅰ. Mappings of the circumference onto itself[M/OL]. American Mathematical Society Translations: Series 2, 1965, 46: 213-284[2024-11-01]. . |
69 | JENSEN M H, BAK P, BOHR T. Transition to chaos by interaction of resonances in dissipative systems. Ⅰ. Circle maps[J]. Physical Review A, 1984, 30(4): 1960. |
70 | GLASS L. Synchronization and rhythmic processes in physiology[J]. Nature, 2001, 410(6825): 277-284. |
71 | MONDRAGÓN-PALOMINO O, DANINO T,SELIMKHANOV J, et al. Entrainment of a population of synthetic genetic oscillators[J]. Science, 2011, 333(6047): 1315-1319. |
72 | ZAMBRANO S, DE TOMA I, PIFFER A, et al. NF-κB oscillations translate into functionally related patterns of gene expression[J]. eLife, 2016, 5: e09100. |
73 | HELTBERG M, KELLOGG R A, KRISHNA S, et al. Noise induces hopping between NF-κB entrainment modes[J]. Cell Systems, 2016, 3(6): 532-539. e3. |
74 | HELTBERG M L, KRISHNA S, JENSEN M H. On chaotic dynamics in transcription factors and the associated effects in differential gene regulation[J]. Nature Communications, 2019, 10(1): 71. |
75 | REN H X, LI Y J, HAN C S, et al. Pancreatic α and β cells are globally phase-locked[J]. Nature Communications, 2022, 13(1): 3721. |
76 | TURING A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society B, 1952, 237(641): 37-72. |
77 | CHENG H, LEDERER W J, CANNELL M B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle[J]. Science, 1993, 262(5134): 740-744. |
78 | WANG H L, ZHANG K, OUYANG Q. Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion systems[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(3 Pt 2): 036210. |
79 | RAJASEKARAN R, CHANG C C, WEIX E W Z, et al. A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design[J]. Cell, 2024, 187(2): 345-359.e16. |
80 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
81 | BRAY D. Protein molecules as computational elements in living cells[J]. Nature, 1995, 376(6538): 307-312. |
82 | RAMOS J L, MARTÍNEZ-BUENO M, MOLINA-HENARES A J, et al. The TetR family of transcriptional repressors[J]. Microbiology and Molecular Biology Reviews, 2005, 69(2): 326-356. |
83 | TIGGES M, MARQUEZ-LAGO T T, STELLING J, et al. A tunable synthetic mammalian oscillator[J]. Nature, 2009, 457(7227): 309-312. |
84 | SANTOS-MORENO J, TASIUDI E, STELLING J, et al. Multistable and dynamic CRISPRi-based synthetic circuits[J]. Nature Communications, 2020, 11(1): 2746. |
85 | PARK J H, HOLLÓ G, SCHAERLI Y. From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator[J]. Nature Communications, 2024, 15(1): 7284. |
86 | KIMCHI O, GOODRICH C P, COURBET A, et al. Self-assembly-based posttranslational protein oscillators[J]. Science Advances, 2020, 6(51): eabc1939. |
87 | TOETTCHER J E, MOCK C, BATCHELOR E, et al. A synthetic-natural hybrid oscillator in human cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39): 17047-17052. |
88 | FUNG E, WONG W W, SUEN J K, et al. A synthetic gene-metabolic oscillator[J]. Nature, 2005, 435(7038): 118-122. |
89 | DANINO T, MONDRAGÓN-PALOMINO O, TSIMRING L, et al. A synchronized quorum of genetic clocks[J]. Nature, 2010, 463(7279): 326-330. |
90 | CHEN Y, KIM J K, HIRNING A J, et al. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251): 986-989. |
91 | LIU C L, FU X F, LIU L Z, et al. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334(6053): 238-241. |
92 | FU X F, TANG L H, LIU C L, et al. Stripe formation in bacterial systems with density-suppressed motility[J]. Physical Review Letters, 2012, 108(19): 198102. |
14 | HO C, JUTRAS-DUBÉ L, ZHAO M L, et al. Nonreciprocal synchronization in embryonic oscillator ensembles[J]. Proceedingsof the National Academy of Sciences of the United States of America, 2024, 121(36): e2401604121. |
15 | HOFFMANN A, LEVCHENKO A, SCOTT M L, et al. The IκB-NF-κB signaling module: temporal control and selective gene activation[J]. Science, 2002, 298(5596): 1241-1245. |
16 | LIN Y H, SOHN C H, DALAL C K, et al. Combinatorial gene regulation by modulation of relative pulse timing[J]. Nature, 2015, 527(7576): 54-58. |
17 | PURVIS J E, KARHOHS K W, MOCK C, et al. p53 Dynamics control cell fate[J]. Science, 2012, 336(6087): 1440-1444. |
18 | CAI L, DALAL C K, ELOWITZ M B. Frequency-modulated nuclear localization bursts coordinate gene regulation[J]. Nature, 2008, 455(7212): 485-490. |
19 | GREGOR T, FUJIMOTO K, MASAKI N, et al. The onset of collective behavior in social amoebae[J]. Science, 2010, 328(5981): 1021-1025. |
93 | GUO L K, LIU M, BI Y J, et al. Using a synthetic machinery to improve carbon yield with acetylphosphate as the core[J]. Nature Communications, 2023, 14(1): 5286. |
94 | ZHANG J, HASTY J, ZARRINPAR A. Live bacterial therapeutics for detection and treatment of colorectal cancer[J]. Nature Reviews Gastroenterology & Hepatology, 2024, 21(5): 295-296. |
95 | OMAR DIN M, DANINO T, PRINDLE A, et al. Synchronized cycles of bacterial lysis for in vivo delivery[J]. Nature, 2016, 536(7614): 81-85. |
96 | LI Y, JIANG Y F, PAXMAN J, et al. A programmable fate decision landscape underlies single-cell aging in yeast[J]. Science, 2020, 369(6501): 325-329. |
97 | JIN M, LI Y, O'LAUGHLIN R, et al. Divergent aging of isogenic yeast cells revealed through single-cell phenotypic dynamics[J]. Cell Systems, 2019, 8(3): 242-253. e3. |
98 | ZHOU Z, LIU Y T, FENG Y S, et al. Engineering longevity-design of a synthetic gene oscillator to slow cellular aging[J]. Science, 2023, 380(6643): 376-381. |
99 | MICHELSON A M. From genetic association to genetic switch[J]. Science, 2008, 322(5909): 1803-1804. |
100 | SHU J, WU C, WU Y T, et al. Induction of pluripotency in mouse somatic cells with lineage specifiers[J]. Cell, 2015, 161(5): 1229. |
101 | LOH K M, LIM B. A precarious balance: pluripotency factors as lineage specifiers[J]. Cell Stem Cell, 2011, 8(4): 363-369. |
102 | WU F Q, SU R Q, LAI Y C, et al. Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination[J]. eLife, 2017, 6: e23702. |
103 | ZHU R H, DEL RIO-SALGADO J M, GARCIA-OJALVO J, et al. Synthetic multistability in mammalian cells[J]. Science, 2022, 375(6578): eabg9765. |
104 | WANG Y, NARASIMAMURTHY R, QU M, et al. Circadian regulation of cancer stem cells and the tumor microenvironmentduring metastasis[J]. Nature Cancer, 2024, 5(4): 546-556. |
105 | WANG C, LUTES L K, BARNOUD C, et al. The circadian immune system[J]. Science Immunology, 2022, 7(72): eabm2465. |
106 | WANG C, ZENG Q, GÜL Z M, et al. Circadian tumor infiltration and function of CD8+ T cells dictate immunotherapy efficacy[J]. Cell, 2024, 187(11): 2690-2702. e17. |
107 | MASRI S, SASSONE-CORSI P. The emerging link between cancer, metabolism, and circadian rhythms[J]. Nature Medicine,2018, 24(12): 1795-1803. |
108 | FORTIN B M, PFEIFFER S M, INSUA-RODRÍGUEZ J, et al. Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade[J]. Nature Immunology, 2024, 25(7): 1257-1269. |
109 | KUBLI S P, BERGER T, ARAUJO D V, et al. Beyond immune checkpoint blockade: emerging immunological strategies[J]. Nature Reviews Drug Discovery, 2021, 20(12): 899-919. |
110 | PFERDEHIRT L, DAMATO A R, DUDEK M, et al. Synthetic gene circuits for preventing disruption of the circadian clock due to interleukin-1-induced inflammation[J]. Science Advances, 2022, 8(21): eabj8892. |
111 | POMERENING J R, SONTAG E D, FERRELL J E JR. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2[J]. Nature Cell Biology, 2003, 5(4): 346-351. |
112 | WANG C, BARNOUD C, CENERENTI M, et al. Dendritic cells direct circadian anti-tumour immune responses[J]. Nature, 2023, 614(7946): 136-143. |
[1] | 高梦学, 王丽娜, 黄鹤. 合成生物学在肠道微生态疗法研发中的应用[J]. 合成生物学, 2022, 3(1): 35-52. |
[2] | 袁盛建, 马迎飞. 噬菌体合成生物学研究进展和应用[J]. 合成生物学, 2020, 1(6): 635-655. |
[3] | 方教乐, 吕中原, 孙晨番, 刘一帆, 徐炜锋, 毛旭明, 李永泉. 达托霉素生物合成过程的调控机制研究进展[J]. 合成生物学, 2020, 1(6): 722-731. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||