合成生物学 ›› 2021, Vol. 2 ›› Issue (2): 222-233.DOI: 10.12211/2096-8280.2020-048

• 特约评述 • 上一篇    下一篇

合成甲基营养细胞工厂同化甲醇的研究进展及未来展望

张卉1,2, 袁姚梦3,4, 张翀3,4, 杨松1,2,5, 邢新会3,4   

  1. 1.青岛农业大学生命科学学院,山东 青岛  266109
    2.青岛农业大学,山东省应用真菌重点实验室,山东 青岛  266109
    3.清华大学化学工程系生物化工研究所,工业生物催化教育部重点实验室,北京 100084
    4.清华大学合成与系统生物学研究中心,北京  100084
    5.青岛农业大学,青岛生物沼气环境微生物国际合作基地,山东 青岛  266109
  • 收稿日期:2020-06-15 修回日期:2021-01-11 出版日期:2021-04-29 发布日期:2021-04-30
  • 通讯作者: 杨松,邢新会
  • 作者简介:张卉(1996─),女,在读硕士。主要研究方向为微生物代谢工程。E-mail:zhanghui_96@126.com
    杨松(1977─),男,博士,教授。主要研究方向为代谢工程和系统组学。E-mail:yangsong1209@163.com
    邢新会(1963─),男,博士,教授。主要研究方向为生物化工,合成生物学,生物育种。E-mail:xhxing@tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFA0901500)

Research progresses and future prospects of synthetic methylotrophic cell factory for methanol assimilation

Hui ZHANG1,2, Yaomeng YUAN3,4, Chong ZHANG3,4, Song YANG1,2,5, Xinhui XING3,4   

  1. 1.School of Life Sciences,Qingdao Agricultural University,Qingdao 266109,Shandong,China
    2.Shandong Province Key Laboratory of Applied Mycology,Qingdao Agricultural University,Qingdao 266109,Shandong,China
    3.Key Lab of Industrial Biocatalysis,Ministry of Education,Institute of Biochemical Engineering,Department of Chemical Engineering,Tsinghua University,Beijing 100084,China
    4.Center for Synthetic and Systems Biology,Tsinghua University,Beijing 100084,China
    5.Qingdao International Center on Microbes Utilizing Biogas,Qingdao Agricultural University,Qingdao 266109,Shandong,China
  • Received:2020-06-15 Revised:2021-01-11 Online:2021-04-29 Published:2021-04-30
  • Contact: Song YANG, Xinhui XING

摘要:

甲醇具有来源广、易储存运输、原料价格竞争力强等优势,被视为极具潜力的生物制造非糖基碳源资源。常用的模式底盘微生物研究历史长、认知清楚、操作工具多,在工程化改造中具有显著优势。近年来,通过借鉴天然甲基营养型微生物的甲醇利用途径对模式底盘进行改造,获得具备高效利用甲醇能力的合成甲基营养细胞工厂的研究日益受到关注。本文系统综述合成甲基营养细胞工厂的甲醇氧化、同化基因及其调控元件,和以共用糖基碳源结合适应性进化策略为主的核酮糖单磷酸途径重构及甲醇同化途径设计构建的研究现状,进而结合合成甲基营养细胞工厂面临的挑战进行展望,提出基于全基因组靶向基因编辑技术结合实验室适应性进化策略构建更高效合成甲基营养细胞工厂的研究方向。

关键词: 甲醇, 合成甲基营养细胞工厂, 生物元件, 核酮糖单磷酸途径, 实验室适应性进化

Abstract:

Methanol is an important and attractive non-sugar carbon source for industry biotechnology due to its advantages of available source, easy storage, convenient transportation and competitive price. The widely-studied microorganisms such as Escherichia coli, Corynebacterium glutamicum and Saccharomyces cerevisiae have a long research history, clear genetic background and a number of matured genetic tools, showing their potential in engineering cell factories for bioproduction. With the accumulated knowledge of native methylotrophs in recent years, these traditional industrial microorganisms have been engineered as methylotrophic cell factories (MeCFs) capable of using methanol as the major carbon and energy source. In this artical, we review the recent research progress including genes involved in the methanol oxidation, assimilation and regulatory elements of MeCFs. We also summarized the strategies based on the adaptive laboratory evolution which applies sugar as the co-substrate to construct the ribulose monophosphate (RuMP) cycle, as well as strategies for designing and tuning methanol assimilation pathway. In the synthetic MeCFs, the construction of the RuMP cycle requires the introduction of three heterologous enzymes, i.e., methanol dehydrogenase encoded by mdh, 3-hexulose 6-phosphate synthase encoded by hps and 6-phospho 3-hexuloisomerase encoded by phi. These enzymes can be further engineered to improve activities through protein engineering and directed evolution. Meanwhile, genes involved in methanol oxidation and assimilation pathways can be finely tuned to exhibit dynamic expression. To further improve methanol utilization of the synthetic MeCFs, the co-substrate for supporting growth has been developed to propel methanol assimilation, which rationally designs a methanol dependent growth model, and thus provides an ideal starting point for subsequent long-term adaptive laboratory evolution experiments. At the end, we discuss the challenges of engineering the synthetic MeCFs, and summarize the future prospects for improving the efficiency of methanol utilization through the combined strategies of genome-wide targeted gene editing and adaptive laboratory evolution.

Key words: methanol, synthetic methylotrophic cell factory, biological elements, ribulose monophosphate pathway, adaptive laboratory evolution

中图分类号: