合成生物学 ›› 2021, Vol. 2 ›› Issue (1): 1-14.doi: 10.12211/2096-8280.2020-074
王也, 王昊晨, 晏明皓, 胡冠华, 汪小我
收稿日期:
2020-07-09
修回日期:
2020-11-15
出版日期:
2021-02-28
发布日期:
2021-03-12
通讯作者:
汪小我
作者简介:
王也(1995—),女,博士研究生,主要研究方向为模式识别与机器学习、生物信息学、合成生物学。E-mail:基金资助:
Ye WANG, Haochen WANG, Minghao YAN, Guanhua HU, Xiaowo WANG
Received:
2020-07-09
Revised:
2020-11-15
Online:
2021-02-28
Published:
2021-03-12
Contact:
Xiaowo WANG
摘要:
合成生物学研究本着师法自然、改造自然及超越自然的理念,其核心是通过人工方式将基因元件优化改造和重新组合,以得到满足需要的人工生物系统。获取性能优异的生物元件是构建和控制人工生物系统的基础。近年来,人工生物分子在代谢工程和基因治疗等领域有着广泛应用。如何在广袤的分子序列空间中高效地搜索与设计具有特定生物功能的分子序列,是合成生物学所面临的重要科学问题。伴随着人工智能技术的快速发展,智能算法在复杂生物特征的挖掘与生物分子的设计中表现出巨大潜力。本文从利用深度学习技术发掘的复杂特征规律为指导,智能化地探索新药物分子、核酸序列和蛋白质序列空间的角度出发,重点分析了深度生成式模型在不同人工生物序列设计中的应用特点。在此基础上,结合小分子化合物、核酸和蛋白质等生物分子设计的应用案例,总结分析了针对人工生物分子序列设计的定向寻优策略。为了对智能算法设计的分子进行评估,系统分析了不同领域中不同角度序列设计评估方案的特点,展望了人工生物序列智能设计的发展,需要充分考虑生物系统具有多层次间调控高度耦合的复杂特性,从系统角度对不同层次的生物序列进行优化设计,从而推动人工生物系统的智能适配与优化。
中图分类号:
王也, 王昊晨, 晏明皓, 胡冠华, 汪小我. 生物分子序列的人工智能设计[J]. 合成生物学, 2021, 2(1): 1-14, doi: 10.12211/2096-8280.2020-074.
Ye WANG, Haochen WANG, Minghao YAN, Guanhua HU, Xiaowo WANG. Design of biomolecular sequences by artificial intelligence[J]. Synthetic Biology Journal, 2021, 2(1): 1-14, doi: 10.12211/2096-8280.2020-074.
1 | 王文方, 钟建江. 合成生物学驱动的智能生物制造研究进展[J]. 生命科学, 2019, 31(4): 95-104. |
WANG Wenfang, ZHONG Jianjiang. Recent advances in smart biomanufacturing driven by synthetic biology [J]. Chinese Bulletin of Life Sciences, 2019, 31(4): 95-104. | |
2 | SILVA D A, YU S, ULGE U Y, et al. De novo design of potent and selective mimics of IL-2 and IL-15 [J]. Nature, 2019, 565(7738): 186-191. |
3 | KIM Minseon, Ilhwan OH, Jaegyoon AHN. An improved method for prediction of cancer prognosis by network learning [J]. Genes (Basel), 2018, 9(10): 478-491. |
4 | 张学工. 从基因组学模式识别到大数据精准医学[C]//中国自动化大会, 2015. |
ZHANG Xuegong. From genomics pattern recognition to big data precision medicine [C]//China Automation Congress, 2015. | |
5 | SEGLER M H S, PREUSS M, WALLER M P. Planning chemical syntheses with deep neural networks and symbolic AI [J]. Nature, 2018, 555(7698): 604-610. |
6 | LU Xiaoyun, LIU Yuwan, YANG Yiqun, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design [J]. Nature Communications, 2019, 10(1): 1378-1478. |
7 | LIU Xiaonan, CHENG Jian, ZHANG Guanghui, et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches [J]. Nature Communications, 2018, 9(1): 448-458. |
8 | WANG Meiyan, YU Yuanhuan, SHAO Jiawei, et al. Engineering synthetic optogenetic networks for biomedical applications [J]. Quantitative Biology, 2017, 5(2): 111-123. |
9 | NEVOIGT E, KOHNKE J, FISCHER C R, et al. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2006, 72(8): 5266-5273. |
10 | GUIZIOU S, SAUVEPLANE V, CHANG Hung-Ju, et al. A part toolbox to tune genetic expression in Bacillus subtilis [J]. Nucleic Acids Research, 2016, 44(15): 7495-7508. |
11 | RUI M C P, VOGL T, KNIELY C, et al. Synthetic core promoters as universal parts for fine-tuning expression in different yeast species [J]. ACS Synthetic Biology, 2017, 6(3): 471-484. |
12 | BLAZECK J, LIU Leqian, REDDEN H, et al. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach [J]. Applied & Environmental Microbiology, 2011, 77(22): 7905-7914. |
13 | URTECHO G, TRIPP A D, INSIGNE K D, et al. Systematic dissection of sequence elements controlling σ70 promoters using a genomically encoded multiplexed reporter assay in Escherichia coli [J]. Biochemistry, 2018, 58(11): 1539-1551. |
14 | HUANG Po Ssu, BOYKEN S E, BAKER D. The coming of age of de novo protein design [J]. Nature, 2016, 537(7620): 320-327. |
15 | MENG Hailin, MA Yingfei, Guoqin MAI, et al. Construction of precise support vector machine based models for predicting promoter strength [J]. Quantitative Biology, 2017, 5(1): 90-98. |
16 | ZOU J, HUSS M, ABID A, et al. A primer on deep learning in genomics [J]. Nature Genetics, 2019, 51(1): 12-18. |
17 | QUANG D, XIE Xiaohui. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences [J]. Nucleic Acids Research, 2016, 44(11): e107-e107. |
18 | SINGH S, YANG Yang, BARNAB, et al. Predicting enhancer-promoter interaction from genomic sequence with deep neural networks [J]. Quantitative Biology, 2019, 7(2): 122-137. |
19 | SINGH R, LANCHANTIN J, ROBINS G, et al. DeepChrome: deep-learning for predicting gene expression from histone modifications [J]. Bioinformatics, 2016, 32(17): i639-i648. |
20 | CHEN Yifei, LI Yi, NARAYAN R, et al. Gene expression inference with deep learning [J]. Bioinformatics, 2016, 32(12): 1832-1839. |
21 | GLIGORIJEVIĆ V, BAROT M, BONNEAU R. deepNF: deep network fusion for protein function prediction [J]. Bioinformatics, 2018, 34(22): 3873-3881. |
22 | KINGMA D P, WELLING M. Auto-encoding variational bayes [C]// 2nd International Conference on Learning Representations, Baniff, Canada, 2014. |
23 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [J]. Advances in Neural Information Processing Systems, 2014: 2672-2680. |
24 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
25 | ZHU Junyan, PARK Taesung, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the IEEE International Conference on Computer Vision, 2017. |
26 | LI Chuan, WAND M. Precomputed real-time texture synthesis with markovian generative adversarial networks [C]// European Conference on Computer Vision, 2016. |
27 | YANG Xiufeng, ZHANG J, YOSHIZOE K, et al. ChemTS: an efficient python library for de novo molecular generation [J]. Science and Technology of Advanced Materials, 2017, 18(1): 972-976. |
28 | SAIKIN S K, KREISBECK C, SHEBERLA D, et al. Closed-loop discovery platform integration is needed for artificial intelligence to make an impact in drug discovery [J]. Expert Opinion on Drug Discovery, 2019, 14(1): 1-4. |
29 | PUTIN E, ASADULAEV A, VANHAELEN Q, et al. Adversarial threshold neural computer for molecular de novo design [J]. Molecular Pharmaceutics, 2018, 15(10): 4386-4397. |
30 | MERK D, FRIEDRICH L, GRISONI F, et al. De novo design of bioactive small molecules by artificial intelligence [J]. Molecular Informatics, 2018, 37: 1-2. |
31 | WANG Ye, WANG Haochen, WEI Lei, et al. Synthetic promoter design in Escherichia coli based on a deep generative network [J]. Nucleic Acids Research, 2020, 48(12): 6403-6412. |
32 | CHUAI Guohui, MA Hanhui, YAN Jifang, et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning [J]. Genome Biology, 2018, 19(1): 80. |
33 | WANG Daqi, ZHANG Chengdong, WANG Bei, et al. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning [J]. Nature Communications, 2019, 10(1): 1-14. |
34 | WANG Jun, ZHANG Xiuqing, CHENG Lixin, et al. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools [J]. RNA Biology, 2020, 17(1): 13-22. |
35 | GRISONI F, NEUHAUS C S, GABERNET G, et al. Designing anticancer peptides by constructive machine learning [J]. ChemMedChem, 2018, 13(13): 1300-1302. |
36 | LI Ruifeng, WIJMA H J, SONG Lu, et al. Computational redesign of enzymes for regio- and enantioselective hydroamination [J]. Nature Chemical Biology, 2018, 14(7): 664-670. |
37 | YANG K K, WU Z, ARNOLD F H. Machine-learning-guided directed evolution for protein engineering [J]. Nature Methods, 2019, 16(8): 687-694. |
38 | SAITO Y, OIKAWA M, NAKAZAWA H, et al. Machine-learning-guided mutagenesis for directed evolution of fluorescent proteins [J]. ACS Synthetic Biology, 2018, 7(9): 2014-2022. |
39 | POPOVA M, ISAYEV O, TROPSHA A. Deep reinforcement learning for de novo drug design [J]. Science Advances, 2018, 4(7): eaap7885. |
40 | RIESSELMAN A J, INGRAHAM J B, MARKS D S. Deep generative models of genetic variation capture the effects of mutations [J]. Nature Methods, 2018, 15(10): 816-822. |
41 | GUPTA A, ZOU J. Feedback GAN for DNA optimizes protein functions [J]. Nature Machine Intelligence, 2019, 1(2): 105-111. |
42 | SATTAROV B, BASKIN I I, HORVATH D, et al. De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping [J]. Journal of Chemical Information and Modeling, 2019, 59(3): 1182-1196. |
43 | GÓMEZ-BOMBARELLI R, WEI J N, DUVENAUD D, et al. Automatic chemical design using a data-driven continuous representation of molecules [J]. ACS Central Science, 2018, 4(2): 268-276. |
44 | OLIVECRONA M, BLASCHKE T, ENGKVIST O, et al. Molecular de-novo design through deep reinforcement learning [J]. Journal of Cheminformatics, 2017, 9(1): 48-61. |
45 | 檀婧. 基于深度学习的生成式模型研究[D]. 北京: 北京邮电大学, 2019. |
TAN Jing. Research on generative model based on deep learning [D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | |
46 | ANAND N, HUANG P. Generative modeling for protein structures [C]// Advances in Neural Information Processing Systems, 2018. |
47 | LI Yibo, ZHANG Liangren, LIU Zhenming. Multi-objective de novo drug design with conditional graph generative model [J]. Journal of Cheminformatics, 2018, 10(1): 33-57. |
48 | MAATEN L VAN DER, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |
49 | CONSORTIUM U P. Reorganizing the protein space at the Universal Protein Resource (UniProt) [J]. Nucleic Acids Research, 2012, 40: D71. |
50 | WEININGER D. SMILES, a chemical language and information system (I): Introduction to methodology and encoding rules [J]. Journal of Chemical Information and Computer Sciences, 1988, 28(1): 31-36. |
51 | SKALIC M, JIMENEZ J, SABBADIN D, et al. Shape-based generative modeling for de novo drug design [J]. Journal of Chemical Information and Modeling, 2019, 59(3): 1205-1214. |
52 | KADURIN A, NIKOLENKO S, KHRABROV K, et al. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico [J]. Molecular Pharmaceutics, 2017, 14(9): 3098-3104. |
53 | Jaechang LIM, Seongok RYU, KIM Jin Woo, et al. Molecular generative model based on conditional variational autoencoder for de novo molecular design [J]. Journal of Cheminformatics, 2018, 10(1): 31-40. |
54 | HESSLER G, BARINGHAUS K H. Artificial intelligence in drug design [J]. Molecules, 2018, 23(10): 2520-2533. |
55 | BLASCHKE T, OLIVECRONA M, ENGKVIST O, et al. Application of generative autoencoder in de novo molecular design [J]. Molecular Informatics, 2018, 37(1/2): 1-11. |
56 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. |
57 | SEGLER M H S, KOGEJ T, TYRCHAN C, et al. Generating focused molecule libraries for drug discovery with recurrent neural networks [J]. ACS Central Science, 2018, 4(1): 120-131. |
58 | ALLEY E C, KHIMULYA G, BISWAS S, et al. Unified rational protein engineering with sequence-based deep representation learning [J]. Nature Methods, 2019, 16(12): 1315-1322. |
59 | DE CAO N, KIPF T. MolGAN: An implicit generative model for small molecular graphs [C]// ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models, 2018. |
60 | RAZAVI A, OORD A VAN DEN, VINYALS O. Generating diverse high-fidelity images with VQ-VAE-2 [C]// Advances in Neural Information Processing Systems, 2019. |
61 | REIG A J, PIRES M M, SNYDER R A, et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins [J]. Nature Chemistry, 2012, 4(11): 900-906. |
62 | KILLORAN N, LEE L J, DELONG A, et al. Generating and designing DNA with deep generative models [EB/OL]. [2017-12-17]. . |
63 | JIN Wengong, BARZILAY R, JAAKKOLA T S. Junction tree variational autoencoder for molecular graph generation [C]// International Conference on Machine Learning, 2018. |
64 | SIMONOVSKY M, KOMODAKIS N. Graphvae: towards generation of small graphs using variational autoencoders [C]// International Conference on Artificial Neural Networks, 2018. |
65 | AWALE M, SIROCKIN F, STIEFL N, et al. Drug analogs from fragment-based long short-term memory generative neural networks [J]. Journal of Chemical Information and Modeling, 2019, 59(4): 1347-1356. |
66 | YU Lantao, ZHANG Weinan, WANG Jun, et al. SeqGAN: Sequence generative adversarial nets with policy gradient [C]// Thirty-First AAAI Conference on Artificial Intelligence, 2017. |
67 | ZHAVORONKOV A, IVANENKOV Y A, ALIPER A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors [J]. Nature Biotechnology, 2019, 37(9): 1038-1040. |
68 | COULOM R. Efficient selectivity and backup operators in Monte-Carlo tree search [C]// International Conference on Computers and Games, 2006. |
69 | XIONG Peng, WANG Meng, ZHOU Xiaoqun, et al. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability [J]. Nature Communications, 2014, 5(1): 1-9. |
70 | RASMUSSEN C E. Gaussian processes in machine learning [C]// Summer School on Machine Learning, 2003. |
71 | KOTOPKA B J, SMOLKE C D. Model-driven generation of artificial yeast promoters [J]. Nature Communications, 2020, 11(1): 2113. |
72 | DAS R, BAKER D. Macromolecular modeling with rosetta [J]. Annual Review of Biochemistry, 2008, 77: 363-82. |
73 | MÉNDEZ-LUCIO O, BAILLIF B, D-A CLEVERT, et al. De novo generation of hit-like molecules from gene expression signatures using artificial intelligence [J]. Nature Communications, 2020, 11(1): 1-10. |
74 | POLYKOVSKIY D, ZHEBRAK A, VETROV D, et al. Entangled conditional adversarial autoencoder for de novo drug discovery [J]. Molecular Pharmaceutics, 2018, 15(10): 4398-4405. |
75 | KANG Seokho, Kyunghyun CHO. Conditional molecular design with deep generative models [J]. Journal of Chemical Information and Modeling, 2019, 59(1): 43-52. |
76 | SOHN Kihyuk, YAN Xinchen, Honglak LEE. Learning structured output representation using deep conditional generative models [C]// Advances in Neural Information Processing Systems, 2015. |
77 | CAO Qin, ZHANG Zhenghao, FU A Xi, et al. A unified framework for integrative study of heterogeneous gene regulatory mechanisms [J]. Nature Machine Intelligence, 2020, 2(8): 447-456. |
78 | ProGen: language modeling for protein generation[EB/OL]. [2020-03-07]. . |
79 | WAN Cen, JONES D T. Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks [J]. Nature Machine Intelligence, 2020, 2: 540-550. |
80 | HE Fei, WANG Rui, LI Jiagen, et al. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture [J]. BMC Systems Biology, 2018, 12(6): 109. |
81 | QI Yifei, ZHANG J Z H. DenseCPD: improving the accuracy of neural-network-based computational protein sequence design with DenseNet [J]. Journal of Chemical Information and Modeling, 2020, 60(3): 1245-1252. |
82 | KUSNER M, PAIGE B, HERNÁNDEZ-LOBATO J. Grammar variational autoencoder [C]// Proceedings of the 34 th International Conference on Machine Learning, Sydney, Australia, 2017. |
83 | ANDERSSON R, SANDELIN A. Determinants of enhancer and promoter activities of regulatory elements [J]. Nature Reviews Genetics, 2020, 21(2): 71-87. |
84 | CHING T, HIMMELSTEIN D S, BEAULIEU-JONES B K, et al. Opportunities and obstacles for deep learning in biology and medicine [J]. Journal of The Royal Society Interface, 2018, 15(141): 20170387. |
85 | BROWN N, FISCATO M, SEGLER M H S, et al. GuacaMol: benchmarking models for de novo molecular design [J]. Journal of Chemical Information and Modeling, 2019, 59(3): 1096-1108. |
86 | ROGERS D, HAHN M. Extended-connectivity fingerprints [J]. Journal of Chemical Information and Modeling, 2010, 50(5): 742-754. |
87 | BUTINA D. Unsupervised data base clustering based on daylight's fingerprint and Tanimoto similarity: a fast and automated way to cluster small and large data sets [J]. Journal of Chemical Information and Computer Sciences, 1999, 39(4): 747-750. |
88 | LANDRUM. RDKit: open-source cheminformatics [CP]. http: //www. rdkit. org. (released June 13, 2018). |
89 | DOU Jiayi, VOROBIEVA A A, SHEFFLER W, et al. De novo design of a fluorescence-activating beta-barrel [J]. Nature, 2018, 561(7724): 485-491. |
90 | SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
91 | PREUER K, RENZ P, UNTERTHINER T, et al. Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery [J]. Journal of Chemical Information and Modeling, 2018, 58(9): 1736-1741. |
92 | FOX R, ROY A, GOVINDARAJAN S, et al. Optimizing the search algorithm for protein engineering by directed evolution [J]. Protein Engineering, 2003, 16(8): 589-597. |
93 | WU N C, DAI Lei, OLSON C A, et al. Adaptation in protein fitness landscapes is facilitated by indirect paths [J]. elife, 2016, 5: e16965. |
94 | MELNIKOV A, MURUGAN A, ZHANG Xiaolan, et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay [J]. Nature Biotechnology, 2012, 30(3): 271-277. |
95 | TROTT O, OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading [J]. Journal of Computational Chemistry, 2010, 31(2): 455-461. |
96 | DING Wentao, CHENG Jian, GUO Dan, et al. Engineering the 5′ UTR-mediated regulation of protein abundance in yeast using nucleotide sequence activity relationships [J]. ACS Synthetic Biology, 2018, 7(12): 2709-2714. |
97 | YAN Minghao. https://github.com/XWangLabTHU/Gpro [CP]. Tsinghua University. (released March15, 2020). |
98 | LIU Yanfeng, LIU Long, LI Jianghua, et al. Synthetic biology toolbox and chassis development in Bacillus subtilis [J]. Trends in Biotechnology, 2019, 37(5): 548-562. |
99 | BENTO A P, GAULTON A, HERSEY A, et al. The ChEMBL bioactivity database: an update [J]. Nucleic Acids Research, 2014, 42(D1): D1083-D1090. |
100 | WANG Jingxue, CAO Huali, ZHANG J Z H, et al. Computational protein design with deep learning neural networks [J]. Scientific Reports, 2018, 8(1): 1-9. |
101 | BUTTON A, MERK D, HISS J A, et al. Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis [J]. Nature Machine Intelligence, 2019, 1(7): 307-315. |
[1] | 卞佳豪, 杨广宇. 人工智能辅助的蛋白质工程[J]. 合成生物学, 2022, 3(3): 429-444. |
[2] | 冯晴晴, 张天鲛, 赵潇, 聂广军. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278. |
[3] | 胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414. |
[4] | 武伟红, 李炜, 张先恩, 崔宗强. 合成生物学与荧光成像技术[J]. 合成生物学, 2022, 3(2): 369-384. |
[5] | 施茜, 吴园园, 杨洋. DNA纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319. |
[6] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[7] | 任师超, 孙秋艳, 冯旭东, 李春. 微生物细胞工厂合成五环三萜皂苷类化合物[J]. 合成生物学, 2022, 3(1): 168-183. |
[8] | 赵晓宇, 张浩, 李雪飞, 胡政. 进化视角下的定量生物学规律与人工生命合成[J]. 合成生物学, 2022, 3(1): 6-21. |
[9] | 褚亚东, 赵宗保. 小型集成化自动移液工作站系统及应用[J]. 合成生物学, 2022, 3(1): 195-208. |
[10] | 黄佳城, 张瑷珲, 付友思, 方柏山. 功能性菌群构建的研究进展[J]. 合成生物学, 2022, 3(1): 155-167. |
[11] | 张亭, 冷梦甜, 金帆, 袁海. 合成生物研究重大科技基础设施概述[J]. 合成生物学, 2022, 3(1): 184-194. |
[12] | 郭思敏, 叶斌, 徐飞. 美德伦理视角下的合成生物学技术伦理治理[J]. 合成生物学, 2022, 3(1): 224-237. |
[13] | 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战[J]. 合成生物学, 2021, 2(6): 854-862. |
[14] | 郭亮, 高聪, 柳亚迪, 陈修来, 刘立明. 大肠杆菌生产饲用氨基酸的研究进展[J]. 合成生物学, 2021, 2(6): 964-981. |
[15] | 汪庆卓, 宋萍, 黄和. 合成生物技术驱动天然的真核油脂细胞工厂开发[J]. 合成生物学, 2021, 2(6): 920-941. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||