• 研究论文 •
李冀渊1, 吴国盛2
收稿日期:
2024-04-02
修回日期:
2024-06-21
出版日期:
2024-09-14
通讯作者:
吴国盛
作者简介:
基金资助:
Jiyuan LI1, Guosheng WU2
Received:
2024-04-02
Revised:
2024-06-21
Online:
2024-09-14
Contact:
Guosheng WU
摘要:
对有机体本质的追问,一直是生物学和哲学久盛不衰的话题。在生物学研究中,经常使用隐喻来认识和理解生命现象。回顾生物学的发展历史,有机体的隐喻可以分为两类:(1)机器隐喻:将有机体的部件与组织方式类比为机器的运作(2)自主系统隐喻:将有机体类比为具有目的性和独特属性的复杂系统。两种隐喻在生物学各个领域发挥认知作用,例如理论假说、启发式工具、科学传播的作用。在隐喻发挥认知作用的同时,也有隐喻使用的一些争议,这个问题在合成生物学的语境下,显得尤为重要。合成生物学旨在通过整合生命科学、化学、物理学、材料科学、计算机科学,利用工程学方法重新设计、从头设计生物系统。合成生物学的发展挑战了自然物/人工物的二分,也为重新理解有机体的本质和方式带来了机遇,从生物元件到合成生命系统,两种隐喻在合成生物学的发展中都有所体现。本文通过对两种隐喻概念的溯源和澄清、以及两种隐喻在合成生物学中的应用,分析有机体隐喻使用中的本体隐喻/认识论隐喻的混淆问题,并说明在合成生物学的语境下,隐喻混淆带来的认知作用和伦理上的争议,例如过度依赖本体隐喻带来认知上的误导作用、隐喻混淆对合成有机体内在价值、道德地位的不当判断等。基于这些讨论,本文将辩护一种认识论隐喻的使用方式,不论从隐喻的认知作用还是伦理后果,都应谨慎使用隐喻。
中图分类号:
李冀渊, 吴国盛. 合成生物学视域下有机体的两种隐喻[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-035.
Jiyuan LI, Guosheng WU. Two Kinds of Metaphor of Organism from the Synthetic Biology Perspective[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-035.
1 | Everything flows: towards a processual philosophy of biology[M/OL]. NICHOLSON D J, DUPRÉ J. First edition ed. Oxford: Oxford University Press, 2018[2024-4-01]. . |
2 | MAIENSCHEIN J. Controlling life: from Jacques Loeb to regenerative medicine[J]. Journal of the History of Biology, 2009, 42(2): 215-230. |
3 | LEDUC S. La biologie synthétique[M]. A. Poinat, 1912. |
4 | GLENNAN S. The New Mechanical Philosophy[M/OL]. First edition. Oxford: Oxford University Press, 2017. (2017-09-21)[2024-04-01]. . |
5 | HUNEMAN P, WOLFE C T. Introduction[J]. History and Philosophy of the Life Sciences, 2010, 32(2/3 ,): 147–154. |
6 | KAY L E. Who wrote the book of life?: a history of the genetic code[M/OL]. New York: Stanford University Press, 2000. [2024-04-01]. . |
7 | BALL P. How Life Works: a user's guide to the new biology[M/OL]//Chicago: University of Chicago Press, 2023[2024-04-01]. . |
8 | REYNOLDS A S. Understanding metaphors in the life sciences[M/OL]. Cambridge, UK: Cambridge University Press, 2022[2024-04-01]. . |
9 | HOLM S, SERBAN M. Philosophical perspectives on the engineering approach in biology: living machines?[M/OL]. London :Routledge, 2020. (2020-07-23)[2024-04-01]. . |
10 | BECHTEL W, RICHARDSON R C. Discovering complexity: decomposition and localization as strategies in scientific research[M/OL]. Cambridge, Massachusetts, USA: The MIT press, 2010[2024-04-01]. . |
11 | BRADIE M. Science and metaphor[J]. Biology and Philosophy, 1999, 14: 159-166. |
12 | VEIT W. Agential thinking[J]. Synthese, 2021, 199(5): 13393-13419. |
13 | KAMPOURAKIS K. The bad use of metaphors and the use of bad metaphors[J]. Science & Education, 2016, 25(9): 947-949. |
14 | BAKER L R. The shrinking difference between artifacts and natural objects[J/OL]. Newsletter on Philosophy and Computers, 2008, 7(2), 2-5[202404-01]. . |
15 | 邱仁宗. 论"扮演上帝角色" 的论证[J]. 伦理学研究, 2017(2): 90-99. |
QIU R Z. On the argumentation of "playing the role of God" [J]. Studies in Ethics, 2017(2): 90-99. | |
16 | 雷瑞鹏. 合成生物学研究和应用的伦理学论证: 对"诉诸自然" 论证的批判[J]. 伦理学研究, 2022(5): 111-118. |
LEI R P. Ethical arguments about the research and application of synthetic biology: criticism to the argument appealing to nature[J]. Studies in Ethics, 2022(5): 111-118. | |
17 | 黄华新, 祝文昇. 科学论证中的隐喻研究: 以合成生物学隐喻为例[J]. 浙江大学学报(人文社会科学版), 2022, 52(9): 104-113. |
HUANG H X, ZHU W S. A study of metaphor in scientific argumentation: taking metaphors of synthetic biology as an example[J]. Journal of Zhejiang University (Humanities and Social Sciences), 2022, 52(9): 104-113. | |
18 | FALKNER D. Metaphors of life: reflections on metaphors in the debate on synthetic biology[M/OL]//HAGEN K, ENGELHARD M, TOEPFER G. Ambivalences of creating life. Cham: Springer, 2016: 251-265 [2024-04-01]. . |
19 | Boldt J. Synthetic biology: metaphors, worldviews, ethics, and law[M/OL]. Wiesbaden: Springer Fachmedien Wiesbaden, 2016[2024-04-01]. . |
20 | FUNK M, STEIZINGER J, FALKNER D, et al. From buzz to burst—critical remarks on the term 'life' and its ethical implications in synthetic biology[J]. NanoEthics, 2019, 13(3): 173-198. |
21 | SCHUSTER J. Descartes' mechanical philosophy[M/OL]//JALOBEANU D, WOLFE C. Encyclopedia of early modern philosophy and the sciences. Cham: Springer, 2020: 1-13. (2020-04-17)[2024-04-01]. . |
22 | VACCARI A. Legitimating the machine: the epistemological foundation of technological metaphor in the natural philosophy of René Descartes[M]//Philosophies of Technology: Francis Bacon and his Contemporaries. Leiden: BRILL, 2008, 2: 287-336. |
23 | NICHOLSON D J. Organisms≠Machines[J]. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44(4): 669–678. |
24 | NICHOLSON D J. Reconceptualizing the organism: from complex machine to flowing stream[M]//Everything Flows. Oxford: Oxford University Press, 2018: 139-166. |
25 | COLEMAN W. Biology in the nineteenth century: problems of form, function and transformation[M].Cambridge: Cambridge University Press, 1977. |
26 | VON BONIN G. Cybernetics or control and communication in the animal and the machine[J]. The Bulletin of Mathematical Biophysics, 1949, 11(2): 145-147. |
27 | COBB M. 1953: when genes became "information"[J]. Cell, 2013, 153(3): 503-506. |
28 | ALBERTS B. The cell as a collection of protein machines: preparing the next generation of molecular biologists[J]. Cell, 1998, 92(3): 291-294. |
29 | KIRSCHNER M, GERHART J, MITCHISON T. Molecular "vitalism"[J]. Cell, 2000, 100(1): 79-88. |
30 | MARISCAL C, BARAHONA A, AUBERT-KATO N, et al. Hidden concepts in the history and philosophy of origins-of-life studies: a workshop report[J]. Origins of Life and Evolution of Biospheres, 2019, 49: 111-145. |
31 | VARELA F G, MATURANA H R, URIBE R. Autopoiesis: the organization of living systems, its characterization and a model[M]// Facets of Systems Science. Boston, MA: Springer, 1991: 559-569. |
32 | MORENO A, MOSSIO M. Biological autonomy: a philosophical and theoretical enquiry[M]. Dordrecht: Springer, 2015. |
33 | WINNING J, BECHTEL W. Review of Biological Autonomy[J]. Philosophy of Science,2016,83(3):446-452. |
34 | REYNOLDS A. The third lens: metaphor and the creation of modern cell biology[M]. University of Chicago Press, 2019. |
35 | KELLER E F. Knowing as making, making as knowing: the many lives of synthetic biology[J]. Biological Theory, 2009, 4(4): 333-339. |
36 | Keller E F. Making sense of life[M]. Harvard University Press, 2002. |
37 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
38 | PADDON C J, KEASLING J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12(5): 355-367. |
39 | GALANIE S, THODEY K, TRENCHARD I J, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100. |
40 | MA L L, YANG S L, PENG Q Y, et al. CRISPR/Cas9-based gene-editing technology for sickle cell disease[J]. Gene, 2023, 874: 147480. |
41 | Editas Medicine Announces Positive Initial Clinical Data from Ongoing Phase 1/2 BRILLIANCE Clinical Trial of EDIT-101 for LCA10[OL]。 Retrieved September 29, 2021, from |
42 | TAKAHASHI K. Cellular reprogramming: lowering gravity on Waddington's epigenetic landscape[J]. Journal of Cell Science, 2012, 125(Pt 11): 2553-2560. |
43 | DEPIL S, DUCHATEAU P, GRUPP S A, et al. 'Off-the-shelf' allogeneic CAR T cells: development and challenges[J]. Nature Reviews Drug Discovery, 2020, 19(3): 185-199. |
44 | QU L, YI Z Y, ZHU S Y, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs[J]. Nature Biotechnology, 2019, 37(9): 1059-1069. |
45 | TYCKO J, VAN M V, ELOWITZ M B, et al. Advancing towards a global mammalian gene regulation model through single-cell analysis and synthetic biology[J]. Current Opinion in Biomedical Engineering, 2017, 4: 174-193. |
46 | BOUDRY M, PIGLIUCCI M. The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors[J]. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44(4 Pt B): 660-668. |
47 | Nicholson, Daniel J. On Being the Right Size, Revisited: The Problem with Engineering Metaphors in Molecular Biology. In Sune Holm & Maria Serban (eds.), Philosophical Perspectives on the Engineering Approach in Biology: Living Machines?[M] London, UK: Routledge. 2020: 40-68. |
48 | KONOPKA A K. Grand metaphors of biology in the genome era[J]. Computers & Chemistry, 2002, 26(5): 397-401. |
49 | QUALE A. The role of metaphor in scientific epistemology: a constructivist perspective and consequences for science education[J]. Science & Education, 2002, 11(5): 443-457. |
50 | DEPLAZES A, HUPPENBAUER M. Synthetic organisms and living machines: Positioning the products of synthetic biology at the borderline between living and non-living matter[J]. Systems and Synthetic Biology, 2009, 3(1-4): 55-63. |
51 | 冀朋. 合成生物学的哲学基础问题研究[D]. 武汉: 华中科技大学, 2021. |
JI P. Research on philosophical basis of synthetic biology[D].Wuhan: Huazhong University of Science and Technology, 2021. | |
52 | 马诗雯, 王国豫. 合成生物学隐喻的双重维度[J]. 科学学研究, 2022, 40(11): 1929-1936. |
MA S W, WANG G Y. The dual dimensions of metaphor in Synthetic Biology[J]. Studies in Science of Science, 2022, 40(11): 1929-1936. | |
53 | ELGIN C Z. True Enough[M]. ■■: The MIT Press, 2017. |
54 | ★★★. Understanding and true belief[M]//Understanding, Explanation, and Scientific Knowledge. Cambridge: Cambridge University Press, 2017 |
55 | LEVY A. Metaphor and scientific explanation[M]//The Scientific Imagination. ■■: Oxford University PressNew York, 2020: 280-303. |
56 | CAMP E. Imaginative frames for scientific inquiry: metaphors, telling facts, and just-so stories[M]//The Scientific Imagination. Oxford: Oxford University Press, 2019: 304-336. |
57 | BENSAUDE VINCENT B. Ethical perspectives on synthetic biology[J]. Biological Theory, 2013, 8(4): 368-375. |
58 | BOLDT J. Machine metaphors and ethics in synthetic biology[J]. Life Sciences, Society and Policy, 2018, 14(1): 12. |
59 | ★★★. Philosophical Perspectives on the Engineering Approach in Biology[M]. First edition. | Abingdon, Oxon; New York: Routledge, 2020. | Series: History and philosophy of biology: Routledge, 2020. |
60 | NED H. The natural and the artefactual: the implications of deep science and deep technology for environmental philosophy[J]. Environmental Ethics, 2001, 23(4): 437-440. |
61 | DOUGLAS T, POWELL R, SAVULESCU J. Is the creation of artificial life morally significant?[J]. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44(4 Pt B): 688-696. |
62 | RUSE M. Darwinism and mechanism: metaphor in science[J]. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2005, 36(2): 285-302. |
63 | TARNITA C E. The ecology and evolution of social behavior in microbes[J]. Journal of Experimental Biology, 2017, 220(Pt 1): 18-24. |
64 | VAAGE N S. Living machines: metaphors we live by[J]. NanoEthics, 2020, 14(1): 57-70. |
[1] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[2] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[3] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[4] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[5] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[6] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[7] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[8] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[9] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[10] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[11] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[12] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[13] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[14] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[15] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||