合成生物学 ›› 2025, Vol. 6 ›› Issue (1): 190-202.DOI: 10.12211/2096-8280.2024-035
• 特约评述 • 上一篇
李冀渊1, 吴国盛2
收稿日期:
2024-04-02
修回日期:
2024-06-21
出版日期:
2025-01-31
发布日期:
2025-03-12
通讯作者:
吴国盛
作者简介:
基金资助:
Jiyuan LI1, Guosheng WU2
Received:
2024-04-02
Revised:
2024-06-21
Online:
2025-01-31
Published:
2025-03-12
Contact:
Guosheng WU
摘要:
对有机体本质的追问,一直是生物学和哲学久盛不衰的话题。在生物学研究中,经常使用隐喻来认识和理解生命现象。回顾生物学的发展历史,有机体的隐喻可以分为两类:①机器隐喻,将有机体的部件与组织方式类比为机器的运作;②自主系统隐喻,将有机体类比为具有目的性和独特属性的复杂系统。两种隐喻在生物学各个领域发挥认知作用,例如理论假说、启发式工具、科学传播的作用。在隐喻发挥认知作用的同时,也有隐喻使用的一些争议,这个问题在合成生物学的语境下,显得尤为重要。合成生物学旨在通过整合生命科学、化学、物理学、材料科学、计算机科学,利用工程学方法重新设计、从头设计生物系统。合成生物学的发展挑战了自然物/人工物的二分,也为重新理解有机体的本质和方式带来了机遇,从生物元件到合成生命系统,两种隐喻在合成生物学的发展中都有所体现。本文通过对两种隐喻概念的溯源和澄清以及两种隐喻在合成生物学中的应用,分析有机体隐喻使用中的本体隐喻/认识论隐喻的混淆问题,并说明在合成生物学的语境下,隐喻混淆带来的认知作用和伦理上的争议,例如过度依赖本体隐喻带来认知上的误导作用、隐喻混淆对合成有机体内在价值、道德地位的不当判断等。基于这些讨论,本文将辩护一种认识论隐喻的立场,不论从隐喻的认知作用还是伦理后果,都应谨慎使用隐喻。
中图分类号:
李冀渊, 吴国盛. 合成生物学视域下有机体的两种隐喻[J]. 合成生物学, 2025, 6(1): 190-202.
Jiyuan LI, Guosheng WU. Two hypothesises for the origins of organisms from the synthetic biology perspective[J]. Synthetic Biology Journal, 2025, 6(1): 190-202.
1 | NICHOLSON D J, DUPRÉ J. Everything flows: towards a processual philosophy of biology[M/OL]. Oxford: Oxford University Press, 2018[2024-4-01]. . |
2 | MAIENSCHEIN J. Controlling life: from Jacques Loeb to regenerative medicine[J]. Journal of the History of Biology, 2009, 42(2): 215-230. |
3 | LEDUC S. La biologie synthétique[M]. Paris: A. Poinat, 1912. |
4 | GLENNAN S. The new mechanical philosophy[M/OL]. Oxford: Oxford University Press, 2017. (2017-09-21)[2024-04-01]. . |
5 | HUNEMAN P, WOLFE C T. Introduction[J]. History and Philosophy of the Life Sciences, 2010, 32(2/3): 147-154. |
6 | KAY L E. Who wrote the book of life? A history of the genetic code[M/OL]. New York: Stanford University Press, 2000. [2024-04-01]. . |
7 | BALL P. How life works: a user’s guide to the new biology[M/OL]. Chicago: University of Chicago Press, 2023[2024-04-01]. . |
8 | REYNOLDS A S. Understanding metaphors in the life sciences[M/OL]. Cambridge, UK: Cambridge University Press, 2022[2024-04-01]. . |
9 | HOLM S, SERBAN M. Philosophical perspectives on the engineering approach in biology: living machines?[M/OL]. London :Routledge, 2020. (2020-07-23)[2024-04-01]. . |
10 | BECHTEL W, RICHARDSON R C. Discovering complexity: decomposition and localization as strategies in scientific research[M/OL]. Cambridge, Massachusetts, USA: The MIT press, 2010[2024-04-01]. . |
11 | BRADIE M. Science and metaphor[J]. Biology and Philosophy, 1999, 14: 159-166. |
12 | VEIT W. Agential thinking[J]. Synthese, 2021, 199(5): 13393-13419. |
13 | KAMPOURAKIS K. The bad use of metaphors and the use of bad metaphors[J]. Science & Education, 2016, 25(9): 947-949. |
14 | BAKER L R. The shrinking difference between artifacts and natural objects[J/OL]. Newsletter on Philosophy and Computers, 2008, 7(2): 2-5[202404-01]. . |
15 | 邱仁宗. 论“扮演上帝角色”的论证[J]. 伦理学研究, 2017(2): 90-99. |
QIU R Z. On the argumentation of “playing the role of God” [J]. Studies in Ethics, 2017(2): 90-99. | |
16 | 雷瑞鹏. 合成生物学研究和应用的伦理学论证: 对“诉诸自然”论证的批判[J]. 伦理学研究, 2022(5): 111-118. |
LEI R P. Ethical arguments about the research and application of synthetic biology: criticism to the argument appealing to nature[J]. Studies in Ethics, 2022(5): 111-118. | |
17 | 黄华新, 祝文昇. 科学论证中的隐喻研究: 以合成生物学隐喻为例[J]. 浙江大学学报(人文社会科学版), 2022, 52(9): 104-113. |
HUANG H X, ZHU W S. A study of metaphor in scientific argumentation: taking metaphors of synthetic biology as an example[J]. Journal of Zhejiang University (Humanities and Social Sciences), 2022, 52(9): 104-113. | |
18 | FALKNER D. Metaphors of life: reflections on metaphors in the debate on synthetic biology[M/OL]// HAGEN K, ENGELHARD M, TOEPFER G. Ambivalences of creating life. Cham: Springer, 2016: 251-265 [2024-04-01]. . |
19 | BOLDT J. Synthetic biology: metaphors, worldviews, ethics, and law[M/OL]. Wiesbaden: Springer Fachmedien Wiesbaden, 2016[2024-04-01]. . |
20 | FUNK M, STEIZINGER J, FALKNER D, et al. From buzz to burst — critical remarks on the term ‘life’ and its ethical implications in synthetic biology[J]. NanoEthics, 2019, 13(3): 173-198. |
21 | SCHUSTER J. Descartes’ mechanical philosophy[M/OL]// JALOBEANU D, WOLFE C. Encyclopedia of early modern philosophy and the sciences. Cham: Springer, 2020: 1-13. (2020-04-17)[2024-04-01]. . |
22 | VACCARI A. Legitimating the machine: the epistemological foundation of technological metaphor in the natural philosophy of René Descartes[M]// Philosophies of Technology: Francis Bacon and his Contemporaries. Leiden: BRILL, 2008, 2: 287-336. |
23 | NICHOLSON D J. Organisms≠Machines[J]. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44(4): 669-678. |
24 | NICHOLSON D J. Reconceptualizing the organism: from complex machine to flowing stream[M/OL]//Everything flows: towards a processual philosophy of biology. Oxford: Oxford University Press, 2018: 139-166 [2024-04-01]. . |
25 | COLEMAN W. Biology in the nineteenth century: problems of form, function and transformation[M]. Cambridge, UK: Cambridge University Press, 1977. |
26 | WIENER N. Cybernetics or control and communication in the animal and the machine[M/OL]. Cambridge, Massachusetts, USA: The MIT Press, 2019[2024-04-01]. . |
27 | COBB M. 1953: when genes became “information”[J]. Cell, 2013, 153(3): 503-506. |
28 | ALBERTS B. The cell as a collection of protein machines: preparing the next generation of molecular biologists[J]. Cell, 1998, 92(3): 291-294. |
29 | KIRSCHNER M, GERHART J, MITCHISON T. Molecular “vitalism”[J]. Cell, 2000, 100(1): 79-88. |
30 | MARISCAL C, BARAHONA A, AUBERT-KATO N, et al. Hidden concepts in the history and philosophy of origins-of-life studies: a workshop report[J]. Origins of Life and Evolution of Biospheres, 2019, 49: 111-145. |
31 | VARELA F G, MATURANA H R, URIBE R. Autopoiesis: the organization of living systems, its characterization and a model[J]. Biosystems, 1974, 5(4): 187-196. |
32 | MORENO A, MOSSIO M. Biological autonomy: a philosophical and theoretical enquiry[M/OL]. Dordrecht: Springer, 2015[2024-04-01]. . |
33 | WINNING J, BECHTEL W. Review of Biological Autonomy [J]. Philosophy of Science, 2016, 83(3): 446-452. |
34 | REYNOLDS A S. The third lens: metaphor and the creation of modern cell biology[M/OL]. Chicago: University of Chicago Press, 2019[2024-04-01]. |
35 | KELLER E F. Knowing as making, making as knowing: the many lives of synthetic biology[J]. Biological Theory, 2009, 4(4): 333-339. |
36 | KELLER E F. Making sense of life[M/OL]. Boston: Harvard University Press, 2002[2024-02-01]. . |
37 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
38 | PADDON C J, KEASLING J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12(5): 355-367. |
39 | GALANIE S, THODEY K, TRENCHARD I J, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100. |
40 | MA L L, YANG S L, PENG Q Y, et al. CRISPR/Cas9-based gene-editing technology for sickle cell disease[J]. Gene, 2023, 874: 147480. |
41 | Editas medicine announces positive initial clinical data from ongoing phase 1/2 BRILLIANCE clinical trial of EDIT-101 for LCA10[EB/OL]. (2021-09-29)[2024-02-01]. . |
42 | TAKAHASHI K. Cellular reprogramming: lowering gravity on Waddington’s epigenetic landscape[J]. Journal of Cell Science, 2012, 125(11): 2553-2560. |
43 | DEPIL S, DUCHATEAU P, GRUPP S A, et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges[J]. Nature Reviews Drug Discovery, 2020, 19(3): 185-199. |
44 | QU L, YI Z Y, ZHU S Y, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs[J]. Nature Biotechnology, 2019, 37(9): 1059-1069. |
45 | TYCKO J, VAN M V, ELOWITZ M B, et al. Advancing towards a global mammalian gene regulation model through single-cell analysis and synthetic biology[J]. Current Opinion in Biomedical Engineering, 2017, 4: 174-193. |
46 | BOUDRY M, PIGLIUCCI M. The mismeasure of machine: synthetic biology and the trouble with engineering metaphors[J]. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44(4 Pt B): 660-668. |
47 | NICHOLSON D J. On being the right size, revisited: the problem with engineering metaphors in molecular biology[M/OL]//HOLM S, SERBAN M. Philosophical perspectives on the engineering approach in biology: living machines? London, UK: Routledge, 2020: 40-68. (2020-07-23)[2024-02-01]. . |
48 | KONOPKA A K. Grand metaphors of biology in the genome era[J]. Computers & Chemistry, 2002, 26(5): 397-401. |
49 | QUALE A. The role of metaphor in scientific epistemology: a constructivist perspective and consequences for science education[J]. Science & Education, 2002, 11(5): 443-457. |
50 | DEPLAZES A, HUPPENBAUER M. Synthetic organisms and living machines: positioning the products of synthetic biology at the borderline between living and non-living matter[J]. Systems and Synthetic Biology, 2009, 3(1/2/3/4): 55-63. |
51 | 冀朋. 合成生物学的哲学基础问题研究[D]. 武汉: 华中科技大学, 2021. |
JI P. Research on philosophical basis of synthetic biology[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
52 | 马诗雯, 王国豫. 合成生物学隐喻的双重维度[J]. 科学学研究, 2022, 40(11): 1929-1936. |
MA S W, WANG G Y. The dual dimensions of metaphor in Synthetic Biology[J]. Studies in Science of Science, 2022, 40(11): 1929-1936. | |
53 | ELGIN C Z. True enough[M/OL]. Cambridge, Massachusetts,USA: The MIT Press, 2017[2024-02-01]. . |
54 | KHALIFA K. Understanding, explanation, and scientific knowledge[M/OL]. Cambridge,UK: Cambridge University Press, 2017[2024-02-01]. . |
55 | LEVY A. Metaphor and scientific explanation[M/OL]//LEVY A, GODFREY-SMITH P. The Scientific Imagination. New York: Oxford University Press, 2020: 280-303 [2024-02-01]. . |
56 | CAMP E. Imaginative frames for scientific inquiry: metaphors, telling facts, and just-so stories[M/OL]//LEVY A, GODFREY-SMITH P. The Scientific imagination. New York: Oxford University Press, 2020: 304-336. (2019-12-19)[2024-02-01]. . |
57 | BENSAUDE VINCENT B. Ethical perspectives on synthetic biology[J]. Biological Theory, 2013, 8(4): 368-375. |
58 | BOLDT J. Machine metaphors and ethics in synthetic biology[J]. Life Sciences, Society and Policy, 2018, 14(1): 12. |
59 | HOLM S, SERBAN M. Philosophical perspectives on the engineering approach in biology[M]. Abingdon, Oxon, New York: Routledge, 2020[2024-02-01]. . |
60 | LEE K K. The natural and the artefactual: the implications of deep science and deep technology for environmental philosophy[M]. Lanham: Lexington Books, 1999: 178. |
61 | DOUGLAS T, POWELL R, SAVULESCU J. Is the creation of artificial life morally significant?[J]. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44(4 Pt B): 688-696. |
62 | RUSE M. Darwinism and mechanism: metaphor in science[J]. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2005, 36(2): 285-302. |
63 | TARNITA C E. The ecology and evolution of social behavior in microbes[J]. Journal of Experimental Biology, 2017, 220(1): 18-24. |
64 | VAAGE N S. Living machines: metaphors we live by[J]. NanoEthics, 2020, 14(1): 57-70. |
[1] | 焦洪涛, 齐蒙, 邵滨, 蒋劲松. DNA数据存储技术的法律治理议题[J]. 合成生物学, 2025, 6(1): 177-189. |
[2] | 徐怀胜, 石晓龙, 刘晓光, 徐苗苗. DNA存储的关键技术:编码、纠错、随机访问与安全性[J]. 合成生物学, 2025, 6(1): 157-176. |
[3] | 石婷, 宋展, 宋世怡, 张以恒. 体外生物转化(ivBT):生物制造的新前沿[J]. 合成生物学, 2024, 5(6): 1437-1460. |
[4] | 柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, 2024, 5(6): 1242-1263. |
[5] | 邵明威, 孙思勉, 杨时茂, 陈国强. 基于极端微生物的生物制造[J]. 合成生物学, 2024, 5(6): 1419-1436. |
[6] | 李怡霏, 陈艾, 孙俊松, 张以恒. 体外多酶分子机器产氢应用中的氢酶研究[J]. 合成生物学, 2024, 5(6): 1461-1484. |
[7] | 陈雨, 张康, 邱以婧, 程彩云, 殷晶晶, 宋天顺, 谢婧婧. 微生物电合成技术转化二氧化碳研究进展[J]. 合成生物学, 2024, 5(5): 1142-1168. |
[8] | 郑皓天, 李朝风, 刘良叙, 王嘉伟, 李恒润, 倪俊. 负碳人工光合群落的设计、优化与应用[J]. 合成生物学, 2024, 5(5): 1189-1210. |
[9] | 夏孔晨, 徐维华, 吴起. 光酶催化混乱性反应的研究进展[J]. 合成生物学, 2024, 5(5): 997-1020. |
[10] | 陈子苓, 向阳飞. 类器官技术与合成生物学协同研究进展[J]. 合成生物学, 2024, 5(4): 795-812. |
[11] | 蔡冰玉, 谭象天, 李伟. 合成生物学在干细胞工程化改造中的研究进展[J]. 合成生物学, 2024, 5(4): 782-794. |
[12] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[13] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[14] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[15] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 284
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 270
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||