• 特约评述 •
徐怀胜1, 石晓龙2, 刘晓光3, 徐苗苗4
收稿日期:
2024-08-26
修回日期:
2024-10-15
出版日期:
2024-10-17
通讯作者:
徐苗苗
作者简介:
基金资助:
Huaisheng XU1, Xiaolong SHI2, Xiaoguang LIU3, Miaomiao XU4
Received:
2024-08-26
Revised:
2024-10-15
Online:
2024-10-17
Contact:
Miaomiao XU
摘要:
DNA信息存储是一种利用DNA分子作为数据载体的新型存储技术,通过合成特定序列的DNA来编码信息,并通过测序技术实现数据的读出。相比于传统的磁性、光学和电子存储介质,DNA存储在存储密度、数据保存时间和能源效率等方面具有显著优势,且不易受电磁干扰的影响。随着全球数据总量的猛增,DNA存储以其高效的存储能力、潜在的低维护成本和易于合成的化学特性,逐渐成为研究热点。本文首先介绍了DNA存储的基本流程,然后综述了DNA信息存储涉及到的关键技术,尤其是编码策略、纠错技术、随机访问及DNA信息加密的研究进展。探讨了当前DNA存储技术的发展现状和主要挑战,如高成本、写入和读取速度慢等问题,并提出了可能的技术改进方向。此外,本文还展望了DNA存储未来的发展前景,强调其在大数据时代的潜在应用和革命性影响,指出了实现商业化应用所需解决的关键技术瓶颈。
中图分类号:
徐怀胜, 石晓龙, 刘晓光, 徐苗苗. DNA存储的关键技术:编码、纠错、随机访问与安全性[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-066.
Huaisheng XU, Xiaolong SHI, Xiaoguang LIU, Miaomiao XU. Key technologies of DNA storage: encoding, error correction, random access, and security[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-066.
纠错码类型 | 码率 | 纠错类型 | 解码算法 | 参考文献 | |
---|---|---|---|---|---|
Bornholt等人 | XOR+重叠编码 | 约0.67 | 插入、删除和替换错误 | 聚类、对齐、多数投票 | [ |
Sun等人 | LDPC | 0.5,0.9 | 替换错误 | 非对称错误感知BP(ABP)解码算法 | [ |
Antkowiak等人 | RS纠错码 | 0.4 | 插入、缺失和替换错误 | 聚类、对齐、多数投票 | [ |
Ding等人 | 软判决译码方法+RS纠错码 | 0.83,0.92,0.945 | 插入、缺失和替换错误 | 软判决解码策略 | [ |
Lu等人 | LDPC+LLR | - | 插入、删除和替换错误 | LDPC码的和积算法 | [ |
Fei等人 | LDPC+类Turbo | 0.5 | 插入、删除和替换错误 | 基于LDPC的解码算法 | [ |
表1 DNA存储纠错技术研究对比
Table 1 Comparison of DNA storage error correction technology research
纠错码类型 | 码率 | 纠错类型 | 解码算法 | 参考文献 | |
---|---|---|---|---|---|
Bornholt等人 | XOR+重叠编码 | 约0.67 | 插入、删除和替换错误 | 聚类、对齐、多数投票 | [ |
Sun等人 | LDPC | 0.5,0.9 | 替换错误 | 非对称错误感知BP(ABP)解码算法 | [ |
Antkowiak等人 | RS纠错码 | 0.4 | 插入、缺失和替换错误 | 聚类、对齐、多数投票 | [ |
Ding等人 | 软判决译码方法+RS纠错码 | 0.83,0.92,0.945 | 插入、缺失和替换错误 | 软判决解码策略 | [ |
Lu等人 | LDPC+LLR | - | 插入、删除和替换错误 | LDPC码的和积算法 | [ |
Fei等人 | LDPC+类Turbo | 0.5 | 插入、删除和替换错误 | 基于LDPC的解码算法 | [ |
数据大小 | 测序技术 | 覆盖率 | 随机访问 | 参考文献 | |
---|---|---|---|---|---|
Organick等人 | 200.2MB | Illumina/Nanopore | 5X/36X | ePCR | [ |
Bögels等人 | 25MB | Illumina | 30X | Thermoconfined PCR | [ |
Yazdi等人 | 3KB | Nanopore | 200X | PCR | [ |
Yaniv等人 | 2.15MB | Illumina | 250X | PCR | [ |
Bornholt等人 | 150KB | Illumina | 40X | PCR | [ |
Lau等人 | - | Nanopore | 30X | PCR | [ |
表2 使用PCR或变异PCR进行DNA存储随机访问的研究对比
Table 2 Comparison of studies using PCR or variant PCR for random access of DNA storage
数据大小 | 测序技术 | 覆盖率 | 随机访问 | 参考文献 | |
---|---|---|---|---|---|
Organick等人 | 200.2MB | Illumina/Nanopore | 5X/36X | ePCR | [ |
Bögels等人 | 25MB | Illumina | 30X | Thermoconfined PCR | [ |
Yazdi等人 | 3KB | Nanopore | 200X | PCR | [ |
Yaniv等人 | 2.15MB | Illumina | 250X | PCR | [ |
Bornholt等人 | 150KB | Illumina | 40X | PCR | [ |
Lau等人 | - | Nanopore | 30X | PCR | [ |
1 | BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-based archival storage system[C]//Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: Association for Computing Machinery, 2016: 637-649. |
2 | CHURCH G M, GAO Y, KOSURI S. Next-generation digital information storage in DNA[J]. Science, 2012, 337(6102): 1628-1628. |
3 | GRASS R N, HECKEL R, PUDDU M, et al. Robust chemical preservation of digital information on DNA in silica with error-correcting codes[J]. Angewandte Chemie International Edition, 2015, 54(8): 2552-2555. |
4 | GOLDMAN N, BERTONE P, CHEN S, et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA[J]. Nature, 2013, 494(7435): 77-80. |
5 | KOSURI S, CHURCH G M. Large-scale de novo DNA synthesis: Technologies and applications[J]. Nature Methods, 2014, 11(5): 499-507. |
6 | LEE H H, KALHOR R, GOELA N, et al. Terminator-free template-independent enzymatic DNA synthesis for digital information storage[J]. Nature Communications, 2019, 10(1): 2383. |
7 | PALLUK S, ARLOW D H, DE ROND T, et al. De novo DNA synthesis using polymerase-nucleotide conjugates[J]. Nature Biotechnology, 2018, 36(7): 645-650. |
8 | ZHIRNOV V, ZADEGAN R M, SANDHU G S, et al. Nucleic acid memory[J]. Nature Materials, 2016, 15(4): 366-370. |
9 | HEINIS T, SOKOLOVSKII R, ALNASIR J J. Survey of Information Encoding Techniques for DNA[J]. ACM Comput. Surv., 2023, 56(4): 107:1-107:30. |
10 | YU M, TANG X, LI Z, et al. High-throughput DNA synthesis for data storage[J]. Chemical Society Reviews, 2024, 53(9): 4463-4489. |
11 | TAN X, GE L, ZHANG T, et al. Preservation of DNA for data storage[J]. Russian Chemical Reviews, 2021, 90(2): 280. |
12 | LEE H, WIEGAND D J, GRISWOLD K, et al. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage[J]. Nature Communications, 2020, 11(1): 5246. |
13 | KUBISTA M, ANDRADE J M, BENGTSSON M, et al. The real-time polymerase chain reaction[J]. Molecular Aspects of Medicine, 2006, 27(2): 95-125. |
14 | SHENDURE J, BALASUBRAMANIAN S, CHURCH G M, et al. DNA sequencing at 40: Past, present and future[J]. Nature, 2017, 550(7676): 345-353. |
15 | MEISER L C, NGUYEN B H, CHEN Y J, et al. Synthetic DNA applications in information technology[J]. Nature Communications, 2022, 13(1): 352. |
16 | CEZE L, NIVALA J, STRAUSS K. Molecular digital data storage using DNA[J]. Nature Reviews Genetics, 2019, 20(8): 456-466. |
17 | WELZEL M, SCHWARZ P M, LÖCHEL H F, et al. DNA-aeon provides flexible arithmetic coding for constraint adherence and error correction in DNA storage[J]. Nature Communications, 2023, 14(1): 628. |
18 | LÖCHEL H F, WELZEL M, HATTAB G, et al. Fractal construction of constrained code words for DNA storage systems[J]. Nucleic Acids Research, 2022, 50(5): e30. |
19 | GAO X, LEPROUST E, ZHANG H, et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids[J]. Nucleic Acids Research, 2001, 29(22): 4744-4750. |
20 | ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage[J]. Nature Biotechnology, 2018, 36(3): 242-248. |
21 | BÖGELS B W A, NGUYEN B H, WARD D, et al. DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access[J]. Nature Nanotechnology, 2023, 18(8): 912-921. |
22 | HAO M, QIAO H, GAO Y, et al. A mixed culture of bacterial cells enables an economic DNA storage on a large scale[J]. Communications Biology, 2020, 3(1): 1-9. |
23 | CHEN W, HAN M, ZHOU J, et al. An artificial chromosome for data storage[J]. National Science Review, 2021, 8(5): nwab028. |
24 | SUN F, DONG Y, NI M, et al. Mobile and self-sustained data storage in an extremophile genomic DNA[J]. Advanced Science, 2023, 10(10): 2206201. |
25 | DONG Y, SUN F, PING Z, et al. DNA storage: Research landscape and future prospects[J]. National Science Review, 2020, 7(6): 1092-1107. |
26 | YAZDI S M H T, GABRYS R, MILENKOVIC O. Portable and error-free DNA-based data storage[J]. Scientific Reports, 2017, 7(1): 5011. |
27 | EL-SHAIKH A, WELZEL M, HEIDER D, et al. High-scale random access on DNA storage systems[J]. NAR Genomics and Bioinformatics, 2022, 4(1): lqab126. |
28 | CHOI Y, BAE H J, LEE A C, et al. DNA micro-disks for the management of DNA-based data storage with index and write-once–read-many (WORM) memory features[J]. Advanced Materials, 2020, 32(37): 2001249. |
29 | NEWMAN S, STEPHENSON A P, WILLSEY M, et al. High density DNA data storage library via dehydration with digital microfluidic retrieval[J]. Nature Communications, 2019, 10(1): 1706. |
30 | BANAL J L, SHEPHERD T R, BERLEANT J, et al. Random access DNA memory using boolean search in an archival file storage system[J]. Nature Materials, 2021, 20(9): 1272-1280. |
31 | XU C, MA B, GAO Z, et al. Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage[J]. Science Advances, 2021, 7(46): eabk0100. |
32 | BENTLEY D R, BALASUBRAMANIAN S, SWERDLOW H P, et al. Accurate whole human genome sequencing using reversible terminator chemistry[J]. Nature, 2008, 456(7218): 53-59. |
33 | ROSS M G, RUSS C, COSTELLO M, et al. Characterizing and measuring bias in sequence data[J]. Genome Biology, 2013, 14(5): R51. |
34 | SCHWARTZ J J, LEE C, SHENDURE J. Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA molecules[J]. Nature Methods, 2012, 9(9): 913-915. |
35 | SHANNON C E. A mathematical theory of communication[J]. Bell Syst. Tech. J., 1948, 27(3): 379-423. |
36 | REN Y, ZHANG Y, LIU Y, et al. DNA-based concatenated encoding system for high-reliability and high-density data storage[J]. Small Methods, 2022, 6(4): 2101335. |
37 | ERLICH Y, ZIELINSKI D. DNA fountain enables a robust and efficient storage architecture[J]. Science, 2017, 355(6328): 950-954. |
38 | ANAVY L, VAKNIN I, ATAR O, et al. Data storage in DNA with fewer synthesis cycles using composite DNA letters[J]. Nature Biotechnology, 2019, 37(10): 1229-1236. |
39 | WANG K, CAO B, MA T, et al. Storing images in DNA via base128 encoding[J]. Journal of Chemical Information and Modeling, 2024, 64(5): 1719-1729. |
40 | DICKINSON G D, MORTUZA G M, CLAY W, et al. An alternative approach to nucleic acid memory[J]. Nature Communications, 2021, 12(1): 2371. |
41 | ZHENG Y, CAO B, ZHANG X, et al. DNA-QLC: An efficient and reliable image encoding scheme for DNA storage[J]. BMC Genomics, 2024, 25(1): 266. |
42 | ZHENG Y, CAO B, WU J, et al. High net information density DNA data storage by the MOPE encoding algorithm[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20(5): 2992-3000. |
43 | CHU H, WANG C, ZHANG Y. Improved constructions of secondary structure avoidance codes for DNA sequences[A]. arXiv, 2023. |
44 | PARK S J, LEE Y, NO J S. Iterative coding scheme satisfying GC balance and run-length constraints for DNA storage with robustness to error propagation[J]. Journal of Communications and Networks, 2022, 24(3): 283-291. |
45 | PING Z, CHEN S, ZHOU G, et al. Towards practical and robust DNA-based data archiving using the yin–yang codec system[J]. Nature Computational Science, 2022, 2(4): 234-242. |
46 | LU X, KIM S. Weakly mutually uncorrelated codes with maximum run length constraint for DNA storage[J]. Computers in Biology and Medicine, 2023, 165: 107439. |
47 | WANG Y, NOOR-A-RAHIM M, ZHANG J, et al. High capacity DNA data storage with variable-length oligonucleotides using repeat accumulate code and hybrid mapping[J]. Journal of Biological Engineering, 2019, 13(1): 89. |
48 | WANG Y, Md NOOR-A-RAHIM, GUNAWAN E, et al. Construction of bio-constrained code for DNA data storage[J]. IEEE Communications Letters, 2019, 23(6): 963-966. |
49 | XAVIER KOHLL A, ANTKOWIAK P L., CHEN W D., et al. Stabilizing synthetic DNA for long-term data storage with earth alkaline salts[J]. Chemical Communications, 2020, 56(25): 3613-3616. |
50 | HECKEL R, MIKUTIS G, GRASS R N. A characterization of the DNA data storage channel[J]. Scientific Reports, 2019, 9(1): 9663. |
51 | SUN Y, HAN G, LIU C, et al. An asymmetric-error-aware LDPC decoding algorithm for DNA storage[J]. IEEE Communications Letters, 2023, 27(1): 32-36. |
52 | SUN J, PHILPOTT M, LOI D, et al. Correcting PCR amplification errors in unique molecular identifiers to generate accurate numbers of sequencing molecules[J]. Nature Methods, 2024, 21(3): 401-405. |
53 | CHEN K, ZHU J, BOŠKOVIĆ F, et al. Nanopore-based DNA hard drives for rewritable and secure data storage[J]. Nano Letters, 2020, 20(5): 3754-3760. |
54 | ANTKOWIAK P L, LIETARD J, DARESTANI M Z, et al. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction[J]. Nature Communications, 2020, 11(1): 5345. |
55 | MEISER L C, ANTKOWIAK P L, KOCH J, et al. Reading and writing digital data in DNA[J]. Nature Protocols, 2020, 15(1): 86-101. |
56 | DING L, WU S, HOU Z, et al. Improving error-correcting capability in DNA digital storage via soft-decision decoding[J]. National Science Review, 2024, 11(2): nwad229. |
57 | LU X, JEONG J, KIM J W, et al. Error rate-based log-likelihood ratio processing for low-density parity-check codes in DNA storage[J]. IEEE Access, 2020, 8: 162892-162902. |
58 | FEI P, WANG Z. LDPC codes for portable DNA storage[C]//2019 IEEE International Symposium on Information Theory (ISIT). 2019: 76-80. |
59 | CHANDAK S, TATWAWADI K, LAU B, et al. Improved read/write cost tradeoff in DNA-based data storage using LDPC codes[C]//2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). 2019: 147-156. |
60 | CAO B, ZHANG X, CUI S, et al. Adaptive coding for DNA storage with high storage density and low coverage[J]. npj Systems Biology and Applications, 2022, 8(1): 1-12. |
61 | ZHANG S, WU J, HUANG B, et al. High-density information storage and random access scheme using synthetic DNA[J]. 3 Biotech, 2021, 11(7): 328. |
62 | RANU N, VILLANI A C, HACOHEN N, et al. Targeting individual cells by barcode in pooled sequence libraries[J]. Nucleic Acids Research, 2019, 47(1): e4. |
63 | MATANGE K, TUCK J M, KEUNG A J. DNA stability: A central design consideration for DNA data storage systems[J]. Nature Communications, 2021, 12(1): 1358. |
64 | TABATABAEI YAZDI S M H, YUAN Y, MA J, et al. A rewritable, random-access DNA-based storage system[J]. Scientific Reports, 2015, 5(1): 14138. |
65 | BORNHOLT J, LOPEZ R, CARMEAN D M, et al. Toward a DNA-based archival storage system[J]. IEEE Micro, 2017, 37(3): 98-104. |
66 | LAU B, CHANDAK S, ROY S, et al. Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing[J]. Scientific Reports, 2023, 13(1): 8514. |
67 | LIMBACHIYA D, GUPTA M K, AGGARWAL V. Family of constrained codes for archival DNA data storage[J]. IEEE Communications Letters, 2018, 22(10): 1972-1975. |
68 | CAO B, II X, ZHANG X, et al. Designing uncorrelated address constrain for DNA storage by DMVO algorithm[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(2): 866-877. |
69 | WENGER A M, PELUSO P, ROWELL W J, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome[J]. Nature Biotechnology, 2019, 37(10): 1155-1162. |
70 | YIN Q, ZHENG Y, WANG B, et al. Design of constraint coding sets for archive DNA storage[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(6): 3384-3394. |
71 | YIN Q, CAO B, LI X, et al. An intelligent optimization algorithm for constructing a DNA storage code: NOL-HHO[J]. International Journal of Molecular Sciences, 2020, 21(6): 2191. |
72 | CAO B, ZHANG X, WU J, et al. Minimum free energy coding for DNA storage[J]. IEEE Transactions on Nanobioscience, 2021, 20(2): 212-222. |
73 | RASOOL A, QU Q, JIANG Q, et al. A strategy-based optimization algorithm to design codes for DNA data storage system[C]//LAI Y, WANG T, JIANG M, et al. Algorithms and Architectures for Parallel Processing. Cham: Springer International Publishing, 2022: 284-299. |
74 | RASOOL A, QU Q, WANG Y, et al. Bio-constrained codes with neural network for density-based DNA data storage[J]. Mathematics, 2022, 10(5): 845. |
75 | CAO B, WANG B, ZHANG Q. GCNSA: DNA storage encoding with a graph convolutional network and self-attention[J]. iScience, 2023, 26(3). |
76 | WU J, ZHENG Y, WANG B, et al. Enhancing physical and thermodynamic properties of DNA storage sets with end-constraint[J]. IEEE Transactions on Nanobioscience, 2022, 21(2): 184-193. |
77 | SHIPMAN S L, NIVALA J, MACKLIS J D, et al. CRISPR–cas encoding of a digital movie into the genomes of a population of living bacteria[J]. Nature, 2017, 547(7663): 345-349. |
78 | ZHANG J, HOU C, LIU C. CRISPR-powered quantitative keyword search engine in DNA data storage[J]. Nature Communications, 2024, 15(1): 2376. |
79 | BENCUROVA E, AKASH A, DOBSON R C J, et al. DNA storage—from natural biology to synthetic biology[J]. Computational and Structural Biotechnology Journal, 2023, 21: 1227-1235. |
80 | FAN C, DENG Q, ZHU T F. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image pfu DNA polymerase[J]. Nature Biotechnology, 2021, 39(12): 1548-1555. |
81 | ZHANG J, CHEN M, LIN G, 等. Advanced DNA amplification for efficient data storage[J]. ACS Applied Materials & Interfaces, 2024, 16(37): 48870-48879. |
82 | ANDERSON R, MOORE T. The economics of information security[J]. Science, 2006, 314(5799): 610-613. |
83 | BRUNET T D P. Aims and methods of biosteganography[J]. Journal of Biotechnology, 2016, 226: 56-64. |
84 | DE SILVA P Y, GANEGODA G U. New trends of digital data storage in DNA[J]. Biomed Research International, 2016, 2016(1): 8072463. |
85 | CUI M, ZHANG Y. Advancing DNA steganography with incorporation of randomness[J]. ChemBioChem, 2020, 21(17): 2503-2511. |
86 | CLELLAND C T, RISCA V, BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533-534. |
87 | GEHANI A, LABEAN T, REIF J. DNA-based cryptography[M]//JONOSKA N, PĂUN G, ROZENBERG G. Aspects of Molecular Computing: Essays Dedicated to Tom Head, on the Occasion of His 70th Birthday. Berlin, Heidelberg: Springer, 2004: 167-188. |
88 | LAI X, LU M, QIN L, et al. Asymmetric encryption and signature method with DNA technology[J]. Science China Information Sciences, 2010, 53(3): 506-514. |
89 | LU M, LAI X, XIAO G, et al. Symmetric-key cryptosystem with DNA technology[J]. Science in China Series F-information Sciences, 2007, 50(3): 324-333. |
90 | GRASS R N, HECKEL R, DESSIMOZ C, et al. Genomic encryption of digital data stored in synthetic DNA[J]. Angewandte Chemie International Edition, 2020, 59(22): 8476-8480. |
91 | YAO X, XIE R, ZAN X, et al. A novel image encryption scheme for DNA storage systems based on DNA hybridization and gene mutation[J]. Interdisciplinary Sciences-Computational LIfe Sciences, 2023, 15(3): 419-432. |
92 | MARRAS A E, ZHOU L, SU H J, et al. Programmable motion of DNA origami mechanisms[J]. Proceedings of the National Academy of Sciences, 2015, 112(3): 713-718. |
93 | ROTHEMUND P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297-302. |
94 | VENEZIANO R, RATANALERT S, ZHANG K, et al. Designer nanoscale DNA assemblies programmed from the top down[J]. Science, 2016, 352(6293): 1534-1534. |
95 | BENSON E, MOHAMMED A, GARDELL J, et al. DNA rendering of polyhedral meshes at the nanoscale[J]. Nature, 2015, 523(7561): 441-444. |
96 | DOUGLAS S M, DIETZ H, LIEDL T, et al. Self-assembly of DNA into nanoscale three-dimensional shapes[J]. Nature, 2009, 459(7245): 414-418. |
97 | ZHANG Y, CHAO J, LIU H, et al. Transfer of two-dimensional oligonucleotide patterns onto stereocontrolled plasmonic nanostructures through DNA-origami-based nanoimprinting lithography[J]. Angewandte Chemie International Edition, 2016, 55(28): 8036-8040. |
98 | WANG D, VIETZ C, SCHRÖDER T, et al. A DNA walker as a fluorescence signal amplifier[J]. Nano Letters, 2017, 17(9): 5368-5374. |
99 | KNUDSEN J B, LIU L, BANK KODAL A L, et al. Routing of individual polymers in designed patterns[J]. Nature Nanotechnology, 2015, 10(10): 892-898. |
100 | LANGECKER M, ARNAUT V, MARTIN T G, et al. Synthetic lipid membrane channels formed by designed DNA nanostructures[J]. Science, 2012, 338(6109): 932-936. |
101 | VOIGT N V, TØRRING T, ROTARU A, et al. Single-molecule chemical reactions on DNA origami[J]. Nature Nanotechnology, 2010, 5(3): 200-203. |
102 | YANG J, MA J, LIU S, et al. A molecular cryptography model based on structures of DNA self-assembly[J]. Chinese Science Bulletin, 2014, 59(11): 1192-1198. |
103 | ZHANG Y, WANG F, CHAO J, et al. DNA origami cryptography for secure communication[J]. Nature Communications, 2019, 10(1): 5469. |
104 | FAN S, WANG D, CHENG J, et al. Information coding in a reconfigurable DNA origami domino array[J]. Angewandte Chemie, 2020, 132(31): 13091-13097. |
105 | ZHU J, ERMANN N, CHEN K, et al. Image encoding using multi-level DNA barcodes with nanopore readout[J]. Small, 2021, 17(28): 2100711. |
106 | SIDDARAMAPPA V, RAMESH K B. DNA-based XOR operation (DNAX) for data security using DNA as a storage medium[M]//KRISHNA A N, SRIKANTAIAH K C, NAVEENA C. Integrated Intelligent Computing, Communication and Security. Singapore: Springer, 2019: 343-351. |
107 | ZHU E, LUO X, LIU C, et al. An operational DNA strand displacement encryption approach[J]. Nanomaterials, 2022, 12(5): 877. |
108 | TENG Y, YANG S, LIU L, et al. Nanoscale storage encryption: Data storage in synthetic DNA using a cryptosystem with a neural network[J]. Science China. Life Sciences, 2022, 65(8): 1673-1676. |
109 | FONTANA R E, DECAD G M. Moore's law realities for recording systems and memory storage components: HDD, tape, NAND, and optical[J]. AIP Advances, 2017, 8(5): 056506. |
110 | HUGHES R A, ELLINGTON A D. Synthetic DNA synthesis and assembly: Putting the synthetic in synthetic biology[J]. Cold Spring Harbor Perspectives in Biology, 2017, 9(1): a023812. |
111 | BLAWAT M, GAEDKE K, HÜTTER I, et al. Forward error correction for DNA data storage[J]. Procedia Computer Science, 2016, 80: 1011-1022. |
112 | ZHOU Y, BI K, GE Q, 等. Advances and challenges in random access techniques for in vitro DNA data storage[J]. ACS Applied Materials & Interfaces, 2024, 16(33): 43102-43113. |
113 | LUO Y, CAO Z, LIU Y, et al. The emerging landscape of microfluidic applications in DNA data storage[J]. Lab on a Chip, 2023, 23(8): 1981-2004. |
114 | LI X, CHEN M, WU H. Multiple errors correction for position-limited DNA sequences with GC balance and no homopolymer for DNA-based data storage[J]. Briefings in Bioinformatics, 2023, 24(1): bbac484. |
115 | PAN W, BYRNE-STEELE M, WANG C, et al. DNA polymerase preference determines PCR priming efficiency[J]. BMC Biotechnology, 2014, 14(1): 10. |
116 | AKASH A, BENCUROVA E, DANDEKAR T. How to make DNA data storage more applicable[J]. Trends in Biotechnology, 2024, 42(1): 17-30. |
117 | YANG S, BÖGELS B W A, WANG F, et al. DNA as a universal chemical substrate for computing and data storage[J]. Nature Reviews Chemistry, 2024, 8(3): 179-194. |
118 | ZHANG D Y, SEELIG G. Dynamic DNA nanotechnology using strand-displacement reactions[J]. Nature Chemistry, 2011, 3(2): 103-113. |
119 | CHERRY K M, QIAN L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks[J]. Nature, 2018, 559(7714): 370-376. |
120 | CHEN C, WEN J, WEN Z, et al. DNA strand displacement based computational systems and their applications[J]. Frontiers in Genetics, 2023, 14: 1120791. |
121 | ZHANG Y, LI F, LI M, et al. Encoding carbon nanotubes with tubular nucleic acids for information storage[J]. Journal of the American Chemical Society, 2019, 141(44): 17861-17866. |
122 | COUDY D, COLOTTE M, LUIS A, et al. Long term conservation of DNA at ambient temperature. Implications for DNA data storage[J]. PLoS One, 2021, 16(11): e0259868. |
123 | BEE C, CHEN Y J, QUEEN M, et al. Molecular-level similarity search brings computing to DNA data storage[J]. Nature Communications, 2021, 12(1): 4764. |
124 | QIN Y, ZHU F, XI B, et al. Robust multi-read reconstruction from noisy clusters using deep neural network for DNA storage[J]. Computational and Structural Biotechnology Journal, 2024, 23: 1076-1087. |
125 | WANG S, MAO X, WANG F, et al. Data storage using DNA[J]. Advanced Materials, 2024, 36(6): 2307499. |
[1] | 陈子苓, 向阳飞. 类器官技术与合成生物学协同研究进展[J]. 合成生物学, 2024, 5(4): 795-812. |
[2] | 蔡冰玉, 谭象天, 李伟. 合成生物学在干细胞工程化改造中的研究进展[J]. 合成生物学, 2024, 5(4): 782-794. |
[3] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[4] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[5] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[6] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[7] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[8] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[9] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[10] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[11] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[12] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[13] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[14] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[15] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||