• 特约评述 •
柴猛1,2, 王风清1,2,3, 魏东芝1,2,3
收稿日期:
2024-01-23
修回日期:
2024-04-24
出版日期:
2024-04-28
通讯作者:
王风清,魏东芝
作者简介:
基金资助:
Meng Chai1,2, Feng-Qing Wang1,2,3, Dong-Zhi Wei1,2,3
Received:
2024-01-23
Revised:
2024-04-24
Online:
2024-04-28
Contact:
Feng-Qing Wang, Dong-Zhi Wei
摘要:
开发环境友好型的生物可降解材料,被公认为是解决“白色污染”的重要途径。作为制备生物可降解材料的主要原料之一,有机酸的绿色高效制造备受关注。木质纤维素是储量庞大且可再生的自然资源,以木质纤维素为原料,通过生物转化的方式生产有机酸,是发展绿色可降解生物基材料的理想途径,具有过程绿色低碳的优势,符合建设绿色可持续发展经济和社会的需求。近年来,人们针对木质纤维素的生物炼制开展了大量研究,并在生物转化合成有机酸等领域取得了重要进展,特别是在高产有机酸微生物细胞工厂的设计开发上不断取得突破,使得生物基有机酸的生产水平屡创新高,丁二酸等品种的产量甚至突破了150 g/L,积极推动了生物基可降解材料产业的形成和发展。本文介绍了木质纤维素的组分并总结了木质纤维素的物理预处理法、化学预处理法、生物预处理法、物理-化学共处理法和化学-生物共处理法等多种预处理技术,以及抑制物的脱毒技术、还原催化分馏工艺、催化剂的回收以及偶联木质纤维素水解和发酵的制造工艺。其次,以木质纤维素为原料合成的高价值有机酸(丁二酸、3-羟基丙酸、粘康酸、2, 5-呋喃二甲酸和2-吡喃酮-4, 6-二羧酸)为例,从这些有机酸的生物合成途径,合成生物学改造策略和发酵条件优化等角度探讨了这些有机酸的研究现状。最后,对当前生物可降解材料产业链的发展趋势进行了总结和展望,讨论了开发新型预处理技术和优化联合生物处理工艺等策略对木质纤维素组分解离和利用的重要意义,并从提高微生物细胞工厂的鲁棒性以及设计木质纤维素的综合转化途径等方面进行系统分析,以期能为有机酸的工业化生产提供参考。
中图分类号:
柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-011.
Meng Chai, Feng-Qing Wang, Dong-Zhi Wei. Synthesis of organic acids from lignocellulose by biotransformation[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-011.
预处理类型 | 预处理技术 | 优点 | 缺点 | 参考 文献 |
---|---|---|---|---|
物理法 | 机械预处理 | 没有抑制物的产生且操作简单 | 设备昂贵且耗能高 | [ |
超声波预处理 | 处理效率高且无抑制剂产生 | 能耗较高且选择性较低 | [ | |
微波预处理 | 反应迅速且选择性较高 | 设备昂贵且运行成本较高 | [ | |
射线预处理 | 工艺方便、环保且经济 | 需要结合额外的物理或化学法预处理 | [ | |
脉冲电场预处理 | 反应快速且节能,需要简单的非热设备 | 需要多个脉冲发生器,且可能产生有毒化学物质 | [ | |
超临界CO2爆破 | 所需处理温度较低且廉价的CO2 | 需要较高的CO2压力,设备成本较高 | [ | |
等离子体预处理 | 过程中不产生有毒或污染化学物 | 能耗较高 | [ | |
化学法 | 酸处理 | 对糖的转化率较高,反应时间短 | 强酸毒性较大、腐蚀性强且处理过程会产生抑制物 | [ |
碱处理 | 工艺简单且条件温和,抑制物产生相对较少 | 下游回收过程复杂 | [ | |
氧化剂预处理 | 选择性高 | 容易导致抑制物的产生 | [ | |
离子溶液预处理 | 可回收重复使用,且热稳定性较好 | 成本较高且再生条件较高 | [ | |
有机溶剂预处理 | 反应时间短 | 部分有机溶剂的腐蚀性和毒性较大,且具有易燃性和挥发性 | [ | |
深共晶溶剂预处理 | 成本和毒性较高 | 粘稠度较高 | [ | |
生物法 | 真菌预处理 | 反应温和且能耗低 | 反应周期较长,回收率需要进一步提高 | [ |
细菌预处理 | 反应温和且能耗低 | 反应周期较长 | [ | |
白蚁预处理 | 反应温和且能耗低 | 反应周期较长 | [ | |
物理-化学共处理 | 蒸气爆破处理 | 处理方式环保 | 能耗较高,对软木的处理效果较差 | [ |
热碱处理 | 处理成本低 | 需要较高的温度和压力 | [ | |
氨纤维爆破预处理 | 条件温和且无抑制产生 | 反应能耗较高,且污染环境 | [ | |
化学-生物共处理 | 铜绿假单胞菌与 稀酸共处理 | 处理效率提高 | 需要进一步优化细菌的处理条件 | [ |
鞘氨醇杆菌与NaOH共处理 | 提高了纤维素水解物的得率 | 需要进一步优化条件 | [ |
表1 木质纤维素常见的预处理工艺及其优缺点
Table 1 Common pretreatment processes of lignocellulose and their advantages and disadvantages
预处理类型 | 预处理技术 | 优点 | 缺点 | 参考 文献 |
---|---|---|---|---|
物理法 | 机械预处理 | 没有抑制物的产生且操作简单 | 设备昂贵且耗能高 | [ |
超声波预处理 | 处理效率高且无抑制剂产生 | 能耗较高且选择性较低 | [ | |
微波预处理 | 反应迅速且选择性较高 | 设备昂贵且运行成本较高 | [ | |
射线预处理 | 工艺方便、环保且经济 | 需要结合额外的物理或化学法预处理 | [ | |
脉冲电场预处理 | 反应快速且节能,需要简单的非热设备 | 需要多个脉冲发生器,且可能产生有毒化学物质 | [ | |
超临界CO2爆破 | 所需处理温度较低且廉价的CO2 | 需要较高的CO2压力,设备成本较高 | [ | |
等离子体预处理 | 过程中不产生有毒或污染化学物 | 能耗较高 | [ | |
化学法 | 酸处理 | 对糖的转化率较高,反应时间短 | 强酸毒性较大、腐蚀性强且处理过程会产生抑制物 | [ |
碱处理 | 工艺简单且条件温和,抑制物产生相对较少 | 下游回收过程复杂 | [ | |
氧化剂预处理 | 选择性高 | 容易导致抑制物的产生 | [ | |
离子溶液预处理 | 可回收重复使用,且热稳定性较好 | 成本较高且再生条件较高 | [ | |
有机溶剂预处理 | 反应时间短 | 部分有机溶剂的腐蚀性和毒性较大,且具有易燃性和挥发性 | [ | |
深共晶溶剂预处理 | 成本和毒性较高 | 粘稠度较高 | [ | |
生物法 | 真菌预处理 | 反应温和且能耗低 | 反应周期较长,回收率需要进一步提高 | [ |
细菌预处理 | 反应温和且能耗低 | 反应周期较长 | [ | |
白蚁预处理 | 反应温和且能耗低 | 反应周期较长 | [ | |
物理-化学共处理 | 蒸气爆破处理 | 处理方式环保 | 能耗较高,对软木的处理效果较差 | [ |
热碱处理 | 处理成本低 | 需要较高的温度和压力 | [ | |
氨纤维爆破预处理 | 条件温和且无抑制产生 | 反应能耗较高,且污染环境 | [ | |
化学-生物共处理 | 铜绿假单胞菌与 稀酸共处理 | 处理效率提高 | 需要进一步优化细菌的处理条件 | [ |
鞘氨醇杆菌与NaOH共处理 | 提高了纤维素水解物的得率 | 需要进一步优化条件 | [ |
脱毒分类 | 脱毒方法 | 适用范围 | 参考文献 |
---|---|---|---|
物理脱毒 | 吸附剂脱毒 | 呋喃、脂肪酸和 酚类物质 | [ |
膜脱毒法 | 酸法预处理抑制物 | [ | |
化学脱毒 | 碱法脱毒 | 酸类与呋喃类 | [ |
还原剂脱毒 | 呋喃类与酚类 | [ | |
氨基酸脱毒 | 呋喃类与醛类 | [ | |
生物脱毒 | 酶法脱毒 | 酚类 | [ |
高耐受抑制物的菌株 | 糠醛类与呋喃类 | [ | |
复合脱毒方法 | 离子交换树脂与 活性炭 | 酚类与呋喃类 | [ |
表2 主要脱毒方法及其适用范围
Table 2 Main detoxification methods and their applicable scopes
脱毒分类 | 脱毒方法 | 适用范围 | 参考文献 |
---|---|---|---|
物理脱毒 | 吸附剂脱毒 | 呋喃、脂肪酸和 酚类物质 | [ |
膜脱毒法 | 酸法预处理抑制物 | [ | |
化学脱毒 | 碱法脱毒 | 酸类与呋喃类 | [ |
还原剂脱毒 | 呋喃类与酚类 | [ | |
氨基酸脱毒 | 呋喃类与醛类 | [ | |
生物脱毒 | 酶法脱毒 | 酚类 | [ |
高耐受抑制物的菌株 | 糠醛类与呋喃类 | [ | |
复合脱毒方法 | 离子交换树脂与 活性炭 | 酚类与呋喃类 | [ |
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 产率 | 生产 强度 | 参考文献 |
---|---|---|---|---|---|---|---|---|
E. coli NZN111 | 木薯淀粉和生木薯 | 敲除pflB、ldhA | 优化发酵温度以及底物添加量等条件 | 好氧-厌氧 两阶段发酵 | 127.1 g/L | — | — | [ |
E. coli AFP111 | 葡萄糖 | 在ptsG突变的菌株中敲除pflB和ldhA | 控制葡萄糖的补加量以及菌体生长速度 | 好氧-厌氧 两阶段发酵 | 99.2 g/L | 110% (摩尔转化率) | 1.30 g/L/h | [ |
E. coli SD121 | 葡萄糖 | 过表达ppc,敲除pflB、ldhA和ptsG | 控制溶氧以及生物量 | 好氧-厌氧 两阶段发酵 | 116.2 g/L | 1.73 mol/mol | 1.55 g/L/h | [ |
E. col AFP111/pTrcC-cscA | 蔗糖和糖蜜 | 在E. coli AFP111的基础上,融合表达CscA与OmpC的锚定基序 | 控制pH以及底物添加量 | 好氧-厌氧 两阶段发酵 | 79.0 g/L | 1.20 mol/mol | 1.05 g/L/h | [ |
C. glutamicum S071/pGEX4-NCgl0275 | 葡萄糖 | 过表达Ncgl0275、pycP458S、pck、ppc、fdh和gapA | 优化葡萄糖的补加量以及生物量 | 好氧-厌氧 两阶段发酵 | 152.2 g/L | 1.67 mol/mol | 1.11 g/L/h | [ |
C. glutamicum ΔldhA-pCRA717 | 葡萄糖 | 过表达pyc,敲除ldhA | 优化碳酸氢盐浓度,溶氧以及pH | 好氧-厌氧 两阶段发酵 | 146.0 g/L | 1.40 mol/mol | 3.2 g/L/h | [ |
S. cerevisiae PMCFfg | 葡萄糖 | 敲除fum1、gpd1、pdc1、pdc5和pdc6,过表达pyc2、mdh3、fumC和frds1 | 控制尿素、碳酸钙和生物素的浓度 | 好氧发酵 | 12.9 g/L | 0.21 mol/mol | — | [ |
Y. lipolytica Hi-SA2 | 葡萄糖 | 合理分配亚细胞区室还原性TCA循环的代谢流 | 控制葡萄糖添加量 | 好氧发酵 | 111.9 g/L | 0.79 g/g | 1.79 g/L/h | [ |
A. succinogenes 130Z-pMDH | 葡萄糖和 木糖 | 过表达mdh | 优化温度以及pH | 厌氧发酵 | 34.2 g/L | 0.71 g/g | 0.36 g/L/h | [ |
Y. lipolytica PGC01003 | 甘油 | 敲除Ylsdh5 | 优化pH、通气量以及底物添加量 | 好氧发酵 | 160.2 g/L | 0.40 g/g | 0.40 g/L/h | [ |
A. succinogenes CGMCC1593 | 玉米秸秆 | — | 优化稀碱预处理、底物浓度、酶负荷和发酵温度 | 同步糖化和发酵(SSF) | 47.4 g/L | 0.72 g/g | 0.99 g/L/h | [ |
E. coli XW136 | 半纤维素 水解液 | 以E.coli KJ122为出发菌株在木糖AM1培养基中连续传代,得到SA滴度提高5倍的突变体,敲除yqhD引入ackA::P yadC fucO-ucpAadhE::fucO | 优化半纤维素水解液的制备,以及发酵过程pH 的控制 | 分批发酵 | 32.0 g/L | 0.90 g/g | — | [ |
T. thermosaccharolyticum M5和A. succinogenes 130Z | 木聚糖 | — | 优化底物浓度、pH、MgCO3浓度以及接种时间 | 联合生物处理(CBP) | 32.5 g/L | 0.39 g/g | — | [ |
表3 利用木质纤维素生物质为原料生物合成丁二酸(SA)的研究进展
Table 3 Research progress in the bio-synthesis of succinic acid (SA) from lignocellulosic biomass
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 产率 | 生产 强度 | 参考文献 |
---|---|---|---|---|---|---|---|---|
E. coli NZN111 | 木薯淀粉和生木薯 | 敲除pflB、ldhA | 优化发酵温度以及底物添加量等条件 | 好氧-厌氧 两阶段发酵 | 127.1 g/L | — | — | [ |
E. coli AFP111 | 葡萄糖 | 在ptsG突变的菌株中敲除pflB和ldhA | 控制葡萄糖的补加量以及菌体生长速度 | 好氧-厌氧 两阶段发酵 | 99.2 g/L | 110% (摩尔转化率) | 1.30 g/L/h | [ |
E. coli SD121 | 葡萄糖 | 过表达ppc,敲除pflB、ldhA和ptsG | 控制溶氧以及生物量 | 好氧-厌氧 两阶段发酵 | 116.2 g/L | 1.73 mol/mol | 1.55 g/L/h | [ |
E. col AFP111/pTrcC-cscA | 蔗糖和糖蜜 | 在E. coli AFP111的基础上,融合表达CscA与OmpC的锚定基序 | 控制pH以及底物添加量 | 好氧-厌氧 两阶段发酵 | 79.0 g/L | 1.20 mol/mol | 1.05 g/L/h | [ |
C. glutamicum S071/pGEX4-NCgl0275 | 葡萄糖 | 过表达Ncgl0275、pycP458S、pck、ppc、fdh和gapA | 优化葡萄糖的补加量以及生物量 | 好氧-厌氧 两阶段发酵 | 152.2 g/L | 1.67 mol/mol | 1.11 g/L/h | [ |
C. glutamicum ΔldhA-pCRA717 | 葡萄糖 | 过表达pyc,敲除ldhA | 优化碳酸氢盐浓度,溶氧以及pH | 好氧-厌氧 两阶段发酵 | 146.0 g/L | 1.40 mol/mol | 3.2 g/L/h | [ |
S. cerevisiae PMCFfg | 葡萄糖 | 敲除fum1、gpd1、pdc1、pdc5和pdc6,过表达pyc2、mdh3、fumC和frds1 | 控制尿素、碳酸钙和生物素的浓度 | 好氧发酵 | 12.9 g/L | 0.21 mol/mol | — | [ |
Y. lipolytica Hi-SA2 | 葡萄糖 | 合理分配亚细胞区室还原性TCA循环的代谢流 | 控制葡萄糖添加量 | 好氧发酵 | 111.9 g/L | 0.79 g/g | 1.79 g/L/h | [ |
A. succinogenes 130Z-pMDH | 葡萄糖和 木糖 | 过表达mdh | 优化温度以及pH | 厌氧发酵 | 34.2 g/L | 0.71 g/g | 0.36 g/L/h | [ |
Y. lipolytica PGC01003 | 甘油 | 敲除Ylsdh5 | 优化pH、通气量以及底物添加量 | 好氧发酵 | 160.2 g/L | 0.40 g/g | 0.40 g/L/h | [ |
A. succinogenes CGMCC1593 | 玉米秸秆 | — | 优化稀碱预处理、底物浓度、酶负荷和发酵温度 | 同步糖化和发酵(SSF) | 47.4 g/L | 0.72 g/g | 0.99 g/L/h | [ |
E. coli XW136 | 半纤维素 水解液 | 以E.coli KJ122为出发菌株在木糖AM1培养基中连续传代,得到SA滴度提高5倍的突变体,敲除yqhD引入ackA::P yadC fucO-ucpAadhE::fucO | 优化半纤维素水解液的制备,以及发酵过程pH 的控制 | 分批发酵 | 32.0 g/L | 0.90 g/g | — | [ |
T. thermosaccharolyticum M5和A. succinogenes 130Z | 木聚糖 | — | 优化底物浓度、pH、MgCO3浓度以及接种时间 | 联合生物处理(CBP) | 32.5 g/L | 0.39 g/g | — | [ |
图2 微生物合成3-羟基丙酸(3-HP)的三条常见途径(PduP:丙醛脱氢酶;PduL:磷酸转移酶;PduW:丙酸激酶;XylA:木糖异构酶;XylB:木酮糖激酶;AspA:天冬氨酸氨水解酶;PDH:丙酮酸脱氢酶;BAPAT:β-丙氨酸丙酮酸转氨酶;ACC:乙酰-CoA 羧化酶;PanD:天冬氨酸-α脱羧酶;MCR:NADPH依赖型丙二酰辅酶A还原酶;PudP:丙醛脱氢酶;PduL:磷酸转乙酰化酶)
Fig. 2 Three common pathways for 3-hydroxypropionic acid (3-HP) synthesis in microorganisms(PduP: Propionaldehyde dehydrogenase; PduL: Phosphotransferase; XylA: Xylose isomerase; XylB: Xylulokinase; AspA: Aspartate ammonia-lyase; PDH: Pyruvate dehydrogenase; BAPAT: β-alanine pyruvate transaminase; ACC: Acetyl-CoA carboxylase; PanD: Aspartate-α-decarboxylase; MCR: Malonyl-CoA reductase; PudP: Propionaldehyde dehydrogenase; PduL: Phosphotransacylase)
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产 强度 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
R. toruloides MCR-ALD6-g2945 | 葡萄糖和 木糖 | 外源表达A. pseudoterreus来源的羧酸转运体 | 优化培养基的 碳氮比 | 补料分 批发酵 | 45.4 g/L | 0.11 g/g | 0.44 g/L/h | [ |
O. polymorpha XFML | 葡萄糖和 木糖 | 优化葡萄糖和木糖共利用系统以及重塑中枢代谢途径 | 控制补糖速度 | 补料分 批发酵 | 79.6 g/L | 0.35 g/ga | 0.41 g/L/ha | [ |
A. niger An3HP9/pyc2/ald6a∆/3HP-6 | 玉米秸秆 水解物 | 优化3-HP代谢途径关键基因的表达,提高前体供应水平以及强化外排转运蛋白 | 优化发酵温度 以及培养基成份 | 分批发酵 | 36.0 g/L | 0.48 g/g | 0.21 g/L/h | [ |
C. glutamicum MH15 | 葡萄糖和 木糖 | 构建甘油利用途径,并微室化定位甘油合成途径,弱化乳酸和乙酸等副产物合成以及构建糖转运转运利用系统 | 控制补糖速度和底物浓度 | 补料分 批发酵 | 62.6 g/L | 0.51 g/g | — | [ |
表4 利用木质纤维素生物质为原料生物合成3-羟基丙酸(3-HP)的研究进展
Table 4 Research progress in the bio-synthesis of 3-hydroxypropionic acid (3-HP) from lignocellulosic biomass
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产 强度 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
R. toruloides MCR-ALD6-g2945 | 葡萄糖和 木糖 | 外源表达A. pseudoterreus来源的羧酸转运体 | 优化培养基的 碳氮比 | 补料分 批发酵 | 45.4 g/L | 0.11 g/g | 0.44 g/L/h | [ |
O. polymorpha XFML | 葡萄糖和 木糖 | 优化葡萄糖和木糖共利用系统以及重塑中枢代谢途径 | 控制补糖速度 | 补料分 批发酵 | 79.6 g/L | 0.35 g/ga | 0.41 g/L/ha | [ |
A. niger An3HP9/pyc2/ald6a∆/3HP-6 | 玉米秸秆 水解物 | 优化3-HP代谢途径关键基因的表达,提高前体供应水平以及强化外排转运蛋白 | 优化发酵温度 以及培养基成份 | 分批发酵 | 36.0 g/L | 0.48 g/g | 0.21 g/L/h | [ |
C. glutamicum MH15 | 葡萄糖和 木糖 | 构建甘油利用途径,并微室化定位甘油合成途径,弱化乳酸和乙酸等副产物合成以及构建糖转运转运利用系统 | 控制补糖速度和底物浓度 | 补料分 批发酵 | 62.6 g/L | 0.51 g/g | — | [ |
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|---|
E.coli GX2xMA | 葡萄糖和木糖 | 引入木糖代谢途径并优化葡萄糖利用途径 | 优化底物浓度 | 分批发酵 | 4.09 g/L | 0.31 g/g | — | [ |
P. putida LC224 | 葡萄糖和木糖 | 敲除hexR并优化木糖异构酶途径,结合代谢模型和适应性进化工程策略 | 控制补糖速度以及溶氧 | 补料分批发酵 | 33.7 g/L | 46%(摩尔转化率) | 0.18 g/L/h | [ |
S. cerevisiae TN22 | 葡萄糖和木糖 | 解除芳香氨基酸对莽草酸合成途径的反馈抑制,消除乙醇积累和优化辅因子供给 | 添加聚丙烯乙二醇4000提取MA | 补料分批发酵 | 4.5 g/L | — | — | [ |
C. glutamicum MA-2 | 葡萄糖和儿茶酚 | 敲除MA环异构酶(CatB)并过表达儿茶酚1,2-二氧酶(CatA) | 控制补料速度和溶氧 | 补料分批发酵 | 85.0 g/L | — | 1.42 g/L/ha | [ |
P. putida MA-1 | 葡萄糖和儿茶酚 | 敲除catBC | 控制溶氧和pH,用氮气对儿茶酚进行脱气以防止其氧化 | 补料分批发酵 | 64.2 g/L | — | 4.50 g/L/h | [ |
表5 利用木质纤维素生物质为原料生物合成粘康酸(MA)的研究进展
Table 5 Research progress in the bio-synthesis of cis, cis-muconic acid (MA) from lignocellulosic biomass
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|---|
E.coli GX2xMA | 葡萄糖和木糖 | 引入木糖代谢途径并优化葡萄糖利用途径 | 优化底物浓度 | 分批发酵 | 4.09 g/L | 0.31 g/g | — | [ |
P. putida LC224 | 葡萄糖和木糖 | 敲除hexR并优化木糖异构酶途径,结合代谢模型和适应性进化工程策略 | 控制补糖速度以及溶氧 | 补料分批发酵 | 33.7 g/L | 46%(摩尔转化率) | 0.18 g/L/h | [ |
S. cerevisiae TN22 | 葡萄糖和木糖 | 解除芳香氨基酸对莽草酸合成途径的反馈抑制,消除乙醇积累和优化辅因子供给 | 添加聚丙烯乙二醇4000提取MA | 补料分批发酵 | 4.5 g/L | — | — | [ |
C. glutamicum MA-2 | 葡萄糖和儿茶酚 | 敲除MA环异构酶(CatB)并过表达儿茶酚1,2-二氧酶(CatA) | 控制补料速度和溶氧 | 补料分批发酵 | 85.0 g/L | — | 1.42 g/L/ha | [ |
P. putida MA-1 | 葡萄糖和儿茶酚 | 敲除catBC | 控制溶氧和pH,用氮气对儿茶酚进行脱气以防止其氧化 | 补料分批发酵 | 64.2 g/L | — | 4.50 g/L/h | [ |
图3 5-羟甲基糠醛合成2,5-呋喃二甲酸(FDCA)的酶催化方法(a)使用真菌芳醇氧化酶(AAO)和非特异性过氧酶(UPO)制备2,5-呋喃二甲酸(FDCA)(b)半乳糖氧化酶突变体(GOaseM3-5)、醛氧化酶(PaoABC)和过氧化氢酶(CAL)级联催化5-羟甲基糠醛(HMF)制备2,5-呋喃二甲酸(FDCA)(c)基于(b)引入过氧化物酶(HRP)合成的2,5-呋喃二甲酸(FDCA)方法(d)羟甲基糠醛和糠醛氧化还原酶(HmfH/HMFO)催化5-羟甲基糠醛(HMF)制备2,5-呋喃二甲酸(FDCA)
Fig. 3 Enzymatic methods for synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural(a)Synthesis of 2, 5-furandicarboxylic acid (FDCA) using fungal-derived aryl alcohol oxidase (AAO) and non-specific peroxidase (UPO)(b)Galactose oxidase mutant (GOaseM3-5), aldehyde oxidase (PaoABC) and catalase (CAL) cascade catalyzes the synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF)(c)2,5-Furandicarboxylic acid (FDCA) route synthesized based on the introduction of peroxidase (HRP) in (b)(d)Hydroxymethylfurfural and furfural oxidoreductase (HmfH/HMFO) catalyze the synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF)
图4 2-吡喃酮-4,6-二羧酸(PDC)的合成途径(G:愈创木基结构单元;S:紫丁香基结构单元;H:对羟基苯基结构单元;LigAB:原儿茶酸4,5-双加氧酶;LigC:4-羧基-2-羟基木酸酯-6-半醛脱氢酶)
Fig. 4 Synthetic pathway of 2-pyrone-4,6-dicarboxylic acid (PDC)(G: guaiacyl monomer; S: syringyl monomer; H: p-hydroxyphenyl monomer; LigAB: PCA 4,5-dioxygenase; LigC: 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase)
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产强度 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
E.coli GYT7 | 葡萄糖 | 过表达抗反馈抑制的3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶,提高前体和优化辅因子的供应水平,并结合计算机模拟分析代谢流 | 偶联pH进行补料 | 补料分 批发酵 | 16.7 g/L | 0.20 g/g | 0.17 g/L/h | [ |
E. coli WJ060、E. coli BL21(DE3)- pET30a-AbquiC和E. coli BL21(DE3)-pRSF-2ABC | 葡萄糖 | 模块化工程,利用葡萄糖合成DHS,接着合成为PCA,最后被催化为PDC | 优化全细胞催化的pH以及负载量等条件 | 补料分 批发酵 | 49.2 g/L | 27.2% (摩尔 转化率) | — | [ |
P. putida KT- PDC2 | 对香豆酸 | 引入PDC合成途径,增强前体PCA的供应 | 控制溶氧 | 补料分 批发酵 | 22.7 g/L | 1.0 mol/mol | 0.21 g/L/h | [ |
P. putida PpY1100-pDVZ21X | 葡萄糖和香草酸 | 引入利用香草酸合成PDC的途径 | 优化培养基成份,控制pH | 补料分 批发酵 | 99.9 g/L | 99% (摩尔 转化率) | 1.69 g/L/h | [ |
表6 微生物合成2-吡喃酮-4,6-二羧酸(PDC)的研究进展
Table 6 Research progress of bio-synthesis of 2-pyrone-4,6-dicarboxylic acid (PDC)
生产菌株 | 底物 | 改造策略 | 发酵条件优化 | 生产方式 | 产量 | 得率 | 生产强度 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
E.coli GYT7 | 葡萄糖 | 过表达抗反馈抑制的3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶,提高前体和优化辅因子的供应水平,并结合计算机模拟分析代谢流 | 偶联pH进行补料 | 补料分 批发酵 | 16.7 g/L | 0.20 g/g | 0.17 g/L/h | [ |
E. coli WJ060、E. coli BL21(DE3)- pET30a-AbquiC和E. coli BL21(DE3)-pRSF-2ABC | 葡萄糖 | 模块化工程,利用葡萄糖合成DHS,接着合成为PCA,最后被催化为PDC | 优化全细胞催化的pH以及负载量等条件 | 补料分 批发酵 | 49.2 g/L | 27.2% (摩尔 转化率) | — | [ |
P. putida KT- PDC2 | 对香豆酸 | 引入PDC合成途径,增强前体PCA的供应 | 控制溶氧 | 补料分 批发酵 | 22.7 g/L | 1.0 mol/mol | 0.21 g/L/h | [ |
P. putida PpY1100-pDVZ21X | 葡萄糖和香草酸 | 引入利用香草酸合成PDC的途径 | 优化培养基成份,控制pH | 补料分 批发酵 | 99.9 g/L | 99% (摩尔 转化率) | 1.69 g/L/h | [ |
1 | SEWWANDI M, WIJESEKARA H, RAJAPAKSHA A U, et al. Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure[J]. Environmental Pollution, 2023, 317: 120747. |
2 | SINGH JADAUN J, BANSAL S, SONTHALIA A, et al. Biodegradation of plastics for sustainable environment[J]. Bioresource Technology, 2022, 347: 126697. |
3 | WANG S Y, CHENG A H, LIU F H, et al. Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view[J]. Industrial Chemistry & Materials, 2023, 1(2): 188-206. |
4 | PEI F Y, LIU L J, ZHU H E, et al. Recent advances in lignocellulose-based monomers and their polymerization[J]. Polymers, 2023, 15(4): 829. |
5 | IDRIS S N, AMELIA T S M, BHUBALAN K, et al. The degradation of single-use plastics and commercially viable bioplastics in the environment: a review[J]. Environmental Research, 2023, 231(Pt 1): 115988. |
6 | BACHA A U R, NABI I, ZAHEER M, et al. Biodegradation of macro- and micro-plastics in environment: a review on mechanism, toxicity, and future perspectives[J]. The Science of the Total Environment, 2023, 858(Pt 3): 160108. |
7 | ZIA K M, NOREEN A, ZUBER M, et al. Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review[J]. International Journal of Biological Macromolecules, 2016, 82: 1028-1040. |
8 | 陈龙, 余强, 庄新姝, 等. 木质纤维素类生物基材料研究进展[J]. 材料导报, 2018, 32(S2): 223-228. |
CHEN L, YU Q, ZHUANG X S, et al. Research progress in lignocellulose bio-based materials[J]. Materials Reports, 2018, 32(S2): 223-228. | |
9 | ZHAO L, SUN Z F, ZHANG C C, et al. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives[J]. Bioresource Technology, 2022, 343: 126123. |
10 | LIU H, LIU Z H, ZHANG R K, et al. Bacterial conversion routes for lignin valorization[J]. Biotechnology Advances, 2022, 60: 108000. |
11 | 陈沁, 杜杰毫, 谢海波, 等. 生物基可聚合单体及其聚合物制备与性能研究进展[J]. 高分子学报, 2016(10): 1330-1358. |
CHEN Q, DU J H, XIE H B, et al. Studies on preparation and properties of bio-based polymeric monomers and their bio-based polymers[J]. Acta Polymerica Sinica, 2016(10): 1330-1358. | |
12 | HAN X, LIU J Q, TIAN S, et al. Microbial cell factories for bio-based biodegradable plastics production[J]. iScience, 2022, 25(11): 105462. |
13 | 支睿, 卢艳波, 王敏, 等. 生物可降解塑料单体二元羧酸的生物合成研究进展[J]. 生物工程学报, 2023, 39(5): 2081-2094. |
ZHI R, LU Y B, WANG M, et al. Recent progress in the biosynthesis of dicarboxylic acids, a monomer of biodegradable plastics[J]. Chinese Journal of Biotechnology, 2023, 39(5): 2081-2094. | |
14 | WANG J, SHIRVANI H, ZHAO H, et al. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems[J]. Biotechnology Advances, 2023, 66: 108157. |
15 | 刘宽庆,张以恒. 木质素的生物降解和生物利用 [J]. 合成生物学, 2024, 5(6): |
LIU K Q, ZHANG Y H. Biological degradation and utilization of lignin[J]. Synthetic Biology Journal, 2024, 5(6): | |
16 | BECKER J, WITTMANN C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances, 2019, 37(6): 107360. |
17 | 曹玉连, 庄伟, 唐成伦, 等. 木质纤维素预处理实现组分综合利用[J]. 生物加工过程, 2024, 22(2): 119-130. |
CAO Y L, ZHUANG W, TANG C L, et al. Advances on comprehensive utilization of lignocellulose through pretreatment technology[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(2): 119-130. | |
18 | ROY R, RAHMAN M S, RAYNIE D E. Recent advances of greener pretreatment technologies of lignocellulose[J]. Current Research in Green and Sustainable Chemistry, 2020, 3: 100035. |
19 | SOHN Y J, SON J, LIM H J, et al. Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives[J]. Bioresource Technology, 2022, 360: 127575. |
20 | BAI X P, WANG G H, YU Y, et al. Changes in the physicochemical structure and pyrolysis characteristics of wheat straw after rod-milling pretreatment[J]. Bioresource Technology, 2018, 250: 770-776. |
21 | DHARMARAJA J, SHOBANA S, ARVINDNARAYAN S, et al. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications[J]. Bioresource Technology, 2023, 369: 128328. |
22 | SUBHEDAR P B, RAY P, GOGATE P R. Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2018, 40(Pt B): 140-150. |
23 | MANKAR A R, PANDEY A, MODAK A, et al. Pretreatment of lignocellulosic biomass: a review on recent advances[J]. Bioresource Technology, 2021, 334: 125235. |
24 | SHANGDIAR S, LIN Y C, PONNUSAMY V K, et al. Pretreatment of lignocellulosic biomass from sugar bagasse under microwave assisted dilute acid hydrolysis for biobutanol production[J]. Bioresource Technology, 2022, 361: 127724. |
25 | HUANG Y F, CHIUEH P T, KUAN W H, et al. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics[J]. Energy, 2016, 100: 137-144. |
26 | SCHNABEL T, HUBER H, GRÜNEWALD T A, et al. Changes in mechanical and chemical wood properties by electron beam irradiation[J]. Applied Surface Science, 2015, 332: 704-709. |
27 | SU X J, ZHANG C Y, LI W J, et al. Radiation-induced structural changes of Miscanthus biomass[J]. Applied Sciences, 2020, 10(3): 1130. |
28 | KUMAR P, BARRETT D M, DELWICHE M J, et al. Pulsed electric field pretreatment of switchgrass and wood chip species for biofuel production[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 10996-11001. |
29 | KOVAČIĆ Đ, RUPČIĆ S, KRALIK D, et al. Pulsed electric field: an emerging pretreatment technology in a biogas production[J]. Waste Management, 2021, 120: 467-483. |
30 | ESCOBAR E L N, SILVA T A DA, PIRICH C L, et al. Supercritical fluids: a promising technique for biomass pretreatment and fractionation[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 252. |
31 | VANNESTE J, ENNAERT T, VANHULSEL A, et al. Unconventional pretreatment of lignocellulose with low-temperature plasma[J]. ChemSusChem, 2017, 10(1): 14-31. |
32 | GONZALES R R, SIVAGURUNATHAN P, KIM S H. Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21678-21684. |
33 | BOLADO-RODRÍGUEZ S, TOQUERO C, MARTÍN-JUÁREZ J, et al. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse[J]. Bioresource Technology, 2016, 201: 182-190. |
34 | DONG L L, CAO G L, ZHAO L, et al. Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production[J]. Bioresource Technology, 2018, 267: 71-76. |
35 | SANTOS L C D, ADARME O F H, BAÊTA B E L, et al. Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks[J]. Bioresource Technology, 2018, 263: 601-612. |
36 | ZHAO C, DING W M, CHEN F, et al. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility[J]. Bioresource Technology, 2014, 155: 34-40. |
37 | ZHANG J X, ZHANG X, YANG M K, et al. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment[J]. Bioresource Technology, 2021, 322: 124522. |
38 | KUMAR B, BHARDWAJ N, AGRAWAL K, et al. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept[J]. Fuel Processing Technology, 2020, 199: 106244. |
39 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1): 70-71. |
40 | KALHOR P, GHANDI K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste[J]. Molecules, 2019, 24(22): 4012. |
41 | ANDLAR M, REZIĆ T, MARĐETKO N, et al. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation[J]. Engineering in Life Sciences, 2018, 18(11): 768-778. |
42 | XU W Y, FU S F, YANG Z M, et al. Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system[J]. Bioresource Technology, 2018, 259: 18-23. |
43 | LI H J, YELLE D J, LI C, et al. Lignocellulose pretreatment in a fungus-cultivating termite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4709-4714. |
44 | AGBOR V B, CICEK N, SPARLING R, et al. Biomass pretreatment: fundamentals toward application[J]. Biotechnology Advances, 2011, 29(6): 675-685. |
45 | SOARES RODRIGUES C I, JACKSON J J, MONTROSS M D. A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions[J]. Industrial Crops and Products, 2016, 92: 165-173. |
46 | MOKOMELE T, COSTA SOUSA L DA, BALAN V, et al. Incorporating anaerobic co-digestion of steam exploded or ammonia fiber expansion pretreated sugarcane residues with manure into a sugarcane-based bioenergy-livestock nexus[J]. Bioresource Technology, 2019, 272: 326-336. |
47 | YAN X, WANG Z R, ZHANG K J, et al. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2017, 245(Pt A): 419-425. |
48 | LIU Z H, OLSON M L, SHINDE S, et al. Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment[J]. Green Chemistry, 2017, 19(20): 4939-4955. |
49 | 杨莉, 谭丽萍, 刘同军. 木质纤维素预处理抑制物产生及脱除方法的研究进展[J]. 生物工程学报, 2021, 37(1): 15-29. |
YANG L, TAN L P, LIU T J. Progress in detoxification of inhibitors generated during lignocellulose pretreatment[J]. Chinese Journal of Biotechnology, 2021, 37(1): 15-29. | |
50 | CARTER B, SQUILLACE P, GILCREASE P C, et al. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency[J]. Biotechnology and Bioengineering, 2011, 108(9): 2053-2060. |
51 | ZHANG Y Q, LI M, WANG Y F, et al. Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane distillation coupled with adsorption[J]. Bioresource Technology, 2015, 197: 276-283. |
52 | HAQ I, ARSHAD Y, NAWAZ A, et al. Removal of phenolic compounds through overliming for enhanced saccharification of wheat straw[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(10): 3011-3017. |
53 | SOUDHAM V P, BRANDBERG T, MIKKOLA J P, et al. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation[J]. Bioresource Technology, 2014, 166: 559-565. |
54 | XIE R, TU M B, CARVIN J, et al. Detoxification of biomass hydrolysates with nucleophilic amino acids enhances alcoholic fermentation[J]. Bioresource Technology, 2015, 186: 106-113. |
55 | TRAMONTINA R, BRENELLI L B, SOUSA A, et al. Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms[J]. Enzyme and Microbial Technology, 2020, 135: 109490. |
56 | LIU Z L, MA M G. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3473-3492. |
57 | SANTOS J C, MARTON J M, FELIPE M G A. Continuous system of combined columns of ion exchange resins and activated charcoal as a new approach for the removal of toxics from sugar cane bagasse hemicellulosic hydrolysate[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16494-16501. |
58 | LI X, XU Y, ALORKU K, et al. A review of lignin-first reductive catalytic fractionation of lignocellulose[J]. Molecular Catalysis, 2023, 550: 113551. |
59 | PARSELL T, YOHE S, DEGENSTEIN J, et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J]. Green Chemistry, 2015, 17(3): 1492-1499. |
60 | LI Y L, YU Y Y, LOU Y H, et al. Hydrogen-transfer reductive catalytic fractionation of lignocellulose: high monomeric yield with switchable selectivity[J]. Angewandte Chemie International Edition, 2023, 62(32): e202307116. |
61 | FACAS G G, BRANDNER D G, BUSSARD J R, et al. Interdependence of solvent and catalyst selection on low pressure hydrogen-free reductive catalytic fractionation[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(12): 4517-4522. |
62 | ZHAN Q W, LIN Q X, WU Y, et al. A fractionation strategy of cellulose, hemicellulose, and lignin from wheat straw via the biphasic pretreatment for biomass valorization[J]. Bioresource Technology, 2023, 376: 128887. |
63 | GUO T Y, LI X C, LIU X H, et al. Catalytic transformation of lignocellulosic biomass into arenes, 5-hydroxymethylfurfural, and furfural[J]. ChemSusChem, 2018, 11(16): 2758-2765. |
64 | SUN Z H, BOTTARI G, AFANASENKO A, et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels[J]. Nature Catalysis, 2018, 1: 82-92. |
65 | LU J S, LI J W, GAO H, et al. Recent progress on bio-succinic acid production from lignocellulosic biomass[J]. World Journal of Microbiology & Biotechnology, 2021, 37(1): 16. |
66 | LIU S Y, LIU Y J, FENG Y G, et al. Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization[J]. Biotechnology for Biofuels, 2019, 12: 35. |
67 | LIU X T, ZHAO G, SUN S J, et al. Biosynthetic pathway and metabolic engineering of succinic acid[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 843887. |
68 | AHN J H, JANG Y S, LEE S Y. Production of succinic acid by metabolically engineered microorganisms[J]. Current Opinion in Biotechnology, 2016, 42: 54-66. |
69 | NARISETTY V, OKIBE M C, AMULYA K, et al. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production[J]. Bioresource Technology, 2022, 360: 127513. |
70 | ZHU L W, TANG Y J. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli [J]. Biotechnology Advances, 2017, 35(8): 1040-1048. |
71 | STOLS L, KULKARNI G, HARRIS B G, et al. Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose[J]. Applied Biochemistry and Biotechnology, 1997, 63-65: 153-158. |
72 | CHEN C X, DING S P, WANG D Z, et al. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111[J]. Bioresource Technology, 2014, 163: 100-105. |
73 | VEMURI G N, EITEMAN M A, ALTMAN E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 28(6): 325-332. |
74 | WANG D, LI Q, SONG Z Y, et al. High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 512-518. |
75 | MA J F, LI F, LIU R M, et al. Succinic acid production from sucrose and molasses by metabolically engineered E. coli using a cell surface display system[J]. Biochemical Engineering Journal, 2014, 91: 240-249. |
76 | CHUNG S C, PARK J S, YUN J E, et al. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum [J]. Metabolic Engineering, 2017, 40: 157-164. |
77 | OKINO S, NOBURYU R, SUDA M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 459-464. |
78 | YAN D J, WANG C X, ZHOU J M, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value[J]. Bioresource Technology, 2014, 156: 232-239. |
79 | CUI Z Y, ZHONG Y T, SUN Z J, et al. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica [J]. Nature Communications, 2023, 14(1): 8480. |
80 | GUARNIERI M T, CHOU Y C, SALVACHÚA D, et al. Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis[J]. Applied and Environmental Microbiology, 2017, 83(17): e00996-17. |
81 | GAO C J, YANG X F, WANG H M, et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica [J]. Biotechnology for Biofuels, 2016, 9(1): 179. |
82 | ZHENG P, FANG L, XU Y, et al. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes [J]. Bioresource Technology, 2010, 101(20): 7889-7894. |
83 | WANG X, YOMANO L P, LEE J Y, et al. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(10): 4021-4026. |
84 | LU J S, LV Y, JIANG Y J, et al. Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9035-9045. |
85 | LYND L R, VAN ZYL W H, MCBRIDE J E, et al. Consolidated bioprocessing of cellulosic biomass: an update[J]. Current Opinion in Biotechnology, 2005, 16(5): 577-583. |
86 | HEO W, KIM J H, KIM S, et al. Enhanced production of 3-hydroxypropionic acid from glucose and xylose by alleviation of metabolic congestion due to glycerol flux in engineered Escherichia coli [J]. Bioresource Technology, 2019, 285: 121320. |
87 | 詹元龙, 赵瑞英, 崔鸿亮, 等. 生物合成3-羟基丙酸的代谢工程研究进展[J]. 生物工程学报, 2020, 36(6): 1101-1112. |
ZHAN Y L, ZHAO R Y, CUI H L, et al. Progress in metabolic engineering of biosynthesis of 3-hydroxypropionic acid[J]. Chinese Journal of Biotechnology, 2020, 36(6): 1101-1112. | |
88 | WANG X D, CUI Z Z, SUN X, et al. Production of 3-hydroxypropionic acid from renewable substrates by metabolically engineered microorganisms: a review[J]. Molecules, 2023, 28(4): 1888. |
89 | LIU D, HWANG H J, OTOUPAL P B, et al. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate[J]. Metabolic Engineering, 2023, 78: 72-83. |
90 | GAO J Q, YU W, LI Y X, et al. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose[J]. Nature Chemical Biology, 2023, 19(12): 1524-1531. |
91 | DAI Z Y, POMRANING K R, DENG S, et al. Metabolic engineering to improve production of 3-hydroxypropionic acid from corn-stover hydrolysate in Aspergillus species[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 53. |
92 | CHEN Z, HUANG J H, WU Y, et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose[J]. Metabolic Engineering, 2017, 39: 151-158. |
93 | ZHAO P, TIAN P F. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria[J]. World Journal of Microbiology and Biotechnology, 2021, 37(7): 117. |
94 | CHOI S, LEE H N, PARK E, et al. Recent advances in microbial production of cis, cis-muconic acid[J]. Biomolecules, 2020, 10(9): 1238. |
95 | NICOLAÏ T, DEPARIS Q, FOULQUIÉ-MORENO M R, et al. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain[J]. Microbial Cell Factories, 2021, 20(1): 114. |
96 | WEILAND F, BARTON N, KOHLSTEDT M, et al. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics[J]. Metabolic Engineering, 2023, 75: 153-169. |
97 | FUJIWARA R, NODA S, TANAKA T, et al. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate[J]. Nature Communications, 2020, 11(1): 279. |
98 | LING C, PEABODY G L, SALVACHÚA D, et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering[J]. Nature Communications, 2022, 13(1): 4925. |
99 | BECKER J, KUHL M, KOHLSTEDT M, et al. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin[J]. Microbial Cell Factories, 2018, 17(1): 115. |
100 | KOHLSTEDT M, STARCK S, BARTON N, et al. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida [J]. Metabolic Engineering, 2018, 47: 279-293. |
101 | WANG G K, ØZMERIH S, GUERREIRO R, et al. Improvement of cis, cis-muconic acid production in Saccharomyces cerevisiae through biosensor-aided genome engineering[J]. ACS Synthetic Biology, 2020, 9(3): 634-646. |
102 | LI X C, ZHANG Y Y, XIA Q N, et al. Acid-free conversion of cellulose to 5-(hydroxymethyl)furfural catalyzed by hot seawater[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3545-3553. |
103 | 蔡佳伟, 李亢悔, 蒋涌泉, 等. HMF制备FDCA的新型催化工艺研究进展[J]. 生物质化学工程, 2022, 56(6): 61-70. |
CAI J W, LI K H, JIANG Y Q, et al. Novel catalytic process for preparing FDCA from HMF[J]. Biomass Chemical Engineering, 2022, 56(6): 61-70. | |
104 | 张雷, 孙启梅, 白富栋, 等. 2,5-呋喃二甲酸合成技术路线及应用前景[J]. 当代化工, 2021, 50(8): 1939-1943. |
ZHANG L, SUN Q M, BAI F D, et al. Synthetic technical route and application prospects of 2,5-furandicarboxylic acid[J]. Contemporary Chemical Industry, 2021, 50(8): 1939-1943. | |
105 | WANG Y B, YU K, LEI D, et al. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4752-4761. |
106 | YUAN H B, LIU H L, DU J K, et al. Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 527-543. |
107 | CARRO J, FERREIRA P, RODRÍGUEZ L, et al. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase[J]. The FEBS Journal, 2015, 282(16): 3218-3229. |
108 | MCKENNA S M, LEIMKÜHLER S, HERTER S, et al. Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem[J]. Green Chemistry, 2015, 17(6): 3271-3275. |
109 | MCKENNA S M, MINES P, LAW P, et al. The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC)[J]. Green Chemistry, 2017, 19(19): 4660-4665. |
110 | KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(11): 4919-4924. |
111 | DIJKMAN W P, GROOTHUIS D E, FRAAIJE M W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid[J]. Angewandte Chemie International Edition, 2014, 53(25): 6515-6518. |
112 | DIJKMAN W P, BINDA C, FRAAIJE M W, et al. Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase[J]. ACS Catalysis, 2015, 5(3): 1833-1839. |
113 | SCHÜÜRMANN J, QUEHL P, FESTEL G, et al. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application[J]. Applied Microbiology and Biotechnology, 2014, 98(19): 8031-8046. |
114 | KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid[J]. Bioresource Technology, 2010, 101(16): 6291-6296. |
115 | YANG C F, HUANG C R. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate[J]. Bioresource Technology, 2016, 214: 311-318. |
116 | YANG C F, HUANG C R. Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2, 5-furan dicarboxylic acid in algal acid hydrolysate[J]. Journal of Bioscience and Bioengineering, 2018, 125(4): 407-412. |
117 | YUAN H B, LI J H, SHIN H D, et al. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60[J]. Bioresource Technology, 2018, 247: 1184-1188. |
118 | YUAN H B, LIU Y F, LI J H, et al. Combinatorial synthetic pathway fine-tuning and comparative transcriptomics for metabolic engineering of Raoultella ornithinolytica BF60 to efficiently synthesize 2,5-furandicarboxylic acid[J]. Biotechnology and Bioengineering, 2018, 115(9): 2148-2155. |
119 | YUAN H B, LIU Y F, LV X Q, et al. Enhanced 2,5-furandicarboxylic acid (FDCA) production in Raoultella ornithinolytica BF60 by manipulation of the key genes in FDCA biosynthesis pathway[J]. Journal of Microbiology and Biotechnology, 2018, 28(12): 1999-2008. |
120 | MICHINOBU T, HISHIDA M, SATO M, et al. Polyesters of 2-pyrone-4,6-dicarboxylic acid (PDC) obtained from a metabolic intermediate of lignin[J]. Polymer Journal, 2008, 40(1): 68-75. |
121 | OTSUKA Y, NAKAMURA M, SHIGEHARA K, et al. Efficient production of 2-pyrone 4,6-dicarboxylic acid as a novel polymer-based material from protocatechuate by microbial function[J]. Applied Microbiology and Biotechnology, 2006, 71(5): 608-614. |
122 | MICHINOBU T, BITO M, TANIMURA M, et al. Synthesis and characterization of hybrid biopolymers of L-lactic acid and 2-pyrone-4, 6-dicarboxylic acid[J]. Journal of Macromolecular Science, Part A, 2010, 47(6): 564-570. |
123 | LUO Z W, KIM W J, LEE S Y. Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-4,6-dicarboxylic acid from glucose[J]. ACS Synthetic Biology, 2018, 7(9): 2296-2307. |
124 | ZHOU D, WU F L, PENG Y F, et al. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4, 6-dicarboxylic acid from glucose[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 92. |
125 | LEE S, JUNG Y J, PARK S J, et al. Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester[J]. Bioresource Technology, 2022, 352: 127106. |
126 | OTSUKA Y, ARAKI T, SUZUKI Y, et al. High-level production of 2-pyrone-4,6-dicarboxylic acid from vanillic acid as a lignin-related aromatic compound by metabolically engineered fermentation to realize industrial valorization processes of lignin[J]. Bioresource Technology, 2023, 377: 128956. |
127 | NOTONIER S, WERNER A Z, KUATSJAH E, et al. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid[J]. Metabolic Engineering, 2021, 65: 111-122. |
128 | MORI K, KAMIMURA N, MASAI E. Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite[J]. Applied Microbiology and Biotechnology, 2018, 102(11): 4807-4816. |
129 | 魏珣, 林长喜. 我国生物基材料产业发展对策与建议[J]. 化学工业, 2022, 40(2): 6-11, 23. |
WEI X, LIN C X. The development strategies and suggestions of domestic bio-based materials industry[J]. Chemical Industry, 2022, 40(2): 6-11, 23. |
[1] | 曹晨凯, 李佳隆, 张科春. 人工代谢途径合成有机醇有机酸的研究进展[J]. 合成生物学, 2021, 2(6): 902-919. |
[2] | 熊亮斌, 宋璐, 赵云秋, 刘坤, 刘勇军, 王风清, 魏东芝. 甾体化合物绿色生物制造:从生物转化到微生物从头合成[J]. 合成生物学, 2021, 2(6): 942-963. |
[3] | 许可, 王靖楠, 李春. 智能抗逆微生物细胞工厂与绿色生物制造[J]. 合成生物学, 2020, 1(4): 427-439. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||