合成生物学

• 特约评述 •    

放线菌聚酮类化合物生物合成体系重构研究进展

谢皇1,2, 郑义蕾1,2, 苏依婷1,2, 阮静怡1,2, 李永泉1,2   

  1. 1.浙江大学药物生物技术研究所,浙江 杭州 310058
    2.浙江省微生物生化与代谢工程重点实验室,浙江 杭州 310058
  • 出版日期:2024-02-01
  • 通讯作者: 李永泉
  • 作者简介:谢皇(1997—) ,男,博士研究生。研究方向为微生物次级代谢产物调控,底盘构建与天然产物的异源表达。E-mail:xiehuang@zju.edu.cn
    郑义蕾(1996—) ,男,博士研究生。研究方向为微生物异源生物合成,微生物次级代谢的生物化学机理。E-mail:yl_zheng@zju.edu.cn
    李永泉(1962—),男,博士,浙江大学求是特聘教授。研究方向为微生物合成生物学、微生物次级代谢调控和微生物制药。E-mail:lyq@zju.edu.cn
  • 基金资助:
    国家自然科学基金(32170057);国家重点研发计划(2019YFA09005400)

An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production

Huang XIE1,2, Yilei ZHENG1,2, Yiting SU1,2, Jingyi RUAN1,2, Yongquan LI1,2   

  1. 1.Institute of Pharmaceutical Biotechnology,Zhejiang University,Hangzhou 310058,Zhejiang,China
    2.Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering,Hangzhou 310058,Zhejiang,China
  • Online:2024-02-01
  • Contact: Yongquan LI

摘要:

放线菌因其丰富的次级代谢产物而成为候选药物发掘的宝贵资源库,其蕴含的大多数活性化合物包含聚酮类、非核糖体肽类、氨基糖苷类、萜类等,其中聚酮类化合物占比最大。大环内酯是聚酮类化合物的典型,常常被用作抗生素、抗肿瘤剂、免疫抑制剂、抗寄生虫剂等,因此具有重要的生物学意义。本综述立足聚酮类大环内酯的生物合成过程,提出了从基因组重塑、调控通路重组、组合代谢工程及聚酮类化合物结构的衍生与多样化等多角度,实现放线菌聚酮类生物合成体系的优化,为工业规模生产聚酮类药物及其新型衍生物提供技术支撑。通过这种多维度的方法,结合最新的合成生物学使能技术,遵循绿色、环保、高效和可持续的策略,可以更有效地优化和增强放线菌中聚酮类化合物的生产,为未来药物的开发和生产提供新的可能性。

关键词: 放线菌, 聚酮, 菌种重构, 产量, 代谢工程, 合成生物学

Abstract:

Actinomycetes, enriched with an abundance of secondary metabolites, have emerged as a critical resource for drug discovery. These organisms predominantly harbor bioactive compounds such as polyketides, non-ribosomal peptides, aminoglycosides, and terpenes, with polyketides representing the most diverse class. Polyketides are divided into three major categories based on polyketide synthase: type I, type II, and type III. Among these, type I polyketides are the most widely distributed and abundant, with macrocyclic lactone compounds serving as the most archetypal representatives. Macrocyclic lactone compounds, frequently utilized as antibiotics, anti-cancer agents, immunosuppressants, and antiparasitic agents, hold immense biological significance. This review delves into the intricacies of the biosynthetic process of macrolides. A multifaceted optimization strategy for the actinomycete polyketides biosynthesis system is proposed, encompassing genome remodeling, regulatory pathway recombination, combinatorial metabolic engineering, and the derivation and diversification of polyketide structures. Initially, by knocking out competing gene clusters and superfluous genomic islands, augmenting the supply of precursors, and enhancing precursor supply and lipid stream processing, researchers can obtain genome-minimized and optimized industrial chassis. This is coupled with strategies such as promoter engineering, regulatory factor engineering, overexpression of rate-limiting enzyme genes, enhanced substrate transport and tolerance, targeted modification of key enzymes, rational design of polyketides, etc. Subsequently, the optimized chassis strains and biosynthetic gene clusters are integrated, supplemented with multi-omics strategies, fermentation process optimization, and guided by rapidly evolving fields of synthetic biology enabling technologies and artificial intelligence, to develop a high-quality, efficient polyketides biosynthesis system. These advancements offer robust technical support for the large-scale production of polyketides pharmaceuticals and their novel derivatives. By employing a multi-dimensional approach, integrating the latest advancements in synthetic biology enabling technologies, and adhering to strategies that are green, environmentally friendly, highly efficient, and sustainable, we can effectively optimize and enhance the production of polyketides in actinomycetes. This presents new possibilities for the development and production of future pharmaceuticals.

Key words: actinomycetes, polyketide, strain reconstruction, production, metabolic engineering, synthetic biology

中图分类号: