合成生物学

• 特约评述 •    

体外生物转化(in vitro BioTransformation,ivBT):生物制造的新前沿

石婷1,2,3, 宋展1,2,3,4, 宋世怡1,2,5, 张以恒1,2,3   

  1. 1.中国科学院天津工业生物技术研究所低碳合成工程生物学重点实验室,天津 300308
    2.中国科学院天津工业生物技术研究所体外合成生物学中心,天津 300308
    3.合成生物学海河实验室,天津 300308
    4.上海交通大学生命科学技术学院,微生物代谢国家重点实验室,上海 200240
    5.华东理工大学生物反应器工程国家重点实验室,上海 200237
  • 收稿日期:2024-01-07 修回日期:2024-03-11 出版日期:2024-04-10
  • 通讯作者: 张以恒
  • 作者简介:石婷(1984—),女,博士,中国科学院天津工业生物技术研究所副研究员。2008年本科毕业于合肥工业大学生物与食品工程学院,2010年和2014年分别获得天津大学化工学院生物化工专业硕士和博士学位。主要研究方向为体外合成生物学、酶工程与微生物代谢工程。E-mail:shi_ting@tib.cas.cn
    宋展(1996—),女,在读博士生。研究方向为体外合成生物学、酶工程和代谢工程。E-mail:song_zhan@sjtu.edu.cn
    张以恒(1971—),男,博士,中国科学院天津工业生物技术研究所低碳合成工程生物学重点实验室主任,曾任美国弗吉尼亚理工大学终身正教授。1993年和1996年分别获得华东理工大学生物工程专业学士和硕士学位;2002年获得美国达特茅斯学院化学工程专业博士学位。主要研究方向为体外合成生物学、新质生物制造、生物炼制以及淀粉储能与释能。E-mail:zhang_xw@tib.cas.cn
  • 基金资助:
    科技部重点专项(2022YFA0912300);国家自然科学基金面上项目(NSFC32271544);合成生物学海河实验室颠覆性创新项目(22HHSWSS000155);天津市合成生物技术创新能力提升行动项目(TSBICIP-CXRC-067)

In vitro BioTransformation (ivBT): new frontier of industrial biomanufacturing

Ting SHI1,2,3, Zhan SONG1,2,3,4, Shiyi SONG1,2,5, Yi-Heng P. Job ZHANG1,2,3   

  1. 1.Key Laboratory of Engineering Biology for Low-Carbon Manufacturing,Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences,Tianjin 300308,China
    2.In Vitro Synthetic Biology Center,Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences,Tianjin 300308,China
    3.Haihe Laboratory of Synthetic Biology,Tianjin 300308,China
    4.State Key Laboratory of Microbial Metabolism,School of Life Sciences and Biotechnology,Shanghai JiaoTong University,Shanghai 200240,China
    5.State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology,Shanghai 200237,China
  • Received:2024-01-07 Revised:2024-03-11 Online:2024-04-10
  • Contact: Yi-Heng P. Job ZHANG

摘要:

人类社会的重大挑战(如粮食安全、能源安全、气候变化与双碳目标等)驱动全社会寻求创新型技术解决方案。体外生物转化(in vitro BioTransformation,ivBT)是介于微生物发酵与酶催化之间的新质生物制造平台,多酶分子机器是其超限生物催化剂。它基于大道至简原则,利用多个天然酶、人工酶以及(仿生/天然)辅酶等重构生化途径,摆脱生物体生存局限(如细胞复制、基础代谢、复杂调控和能量供给等),超越细胞合成极限,实现重要生物转化与超限能量转换,尤其是生产低值大宗产品与新能源产品等。工业生物制造的三个平台技术分别是基于细胞工厂的发酵、基于酶分子的生物催化与基于多酶分子机器的ivBT。本综述对ivBT给出明确定义,阐明其多酶途径设计原则与产业化技术研发路径,比较该平台与现有生物制造平台相似性与不同点,介绍多个代表性案例,以及讨论其未来的机会与挑战。ivBT技术发展采用设计-构建-判决-优化的线性策略,开发能够满足国家需求的超高效多酶分子机器。利用ivBT有望形成超过30万亿元生物产品的工业生物制造,助力实现人类社会的多项重要需求,如粮食安全、新型能源体系等。人造淀粉不仅将帮助中国端牢粮食饭碗,而且将是一个全新且安全的高密度储氢载体(比压缩氢气高2.5倍)与高能储电介质(比锂电池高10倍)。

关键词: 体外合成生物学, 工业生物制造, 体外生物转化, 多酶分子机器, 粮食安全

Abstract:

Huge challenges, such as food security, energy security, climate change, dual-carbon target, and so on, motivate human society to seek disruptive and innovative solutions. In vitro biotransformation (ivBT), bridging the gap between whole-cell-based fermentation and enzyme-based biocatalysis, is an emerging biomanufacturing platform that is designed for the production of biocommodities (e.g., synthetic starch, healthy sweeteners, organic acids, etc.) and bioenergy. In ivBT, in vitro synthetic enzymatic biosystem (ivSEB) is its high-efficiency biocatalyst. Based on the Chinese philosophy that “Tao is simple”, ivSEB is the in vitro reconstruction of artificial (non-natural) enzymatic pathways with a number of natural enzymes, artificial enzymes, and/or (biomimetic or natural) coenzymes, and/or artificial membrane, without living cell's constraints, such as cell duplication, bioenergetics, basic metabolisms, regulation, and so on. ivBT enables it to surpass the limitations of whole-cell fermentation and has multiple advantages, such as theoretical product yield, at least 10-time volumetric productivity, tolerance to toxic substrate/product, and so on. This review defines the concept of ivBT, presents its design principles, distinguishes it from other seemingly-like concepts, such as cell-free protein synthesis and cascade enzyme biocatalysis, introduces several representative examples, and discusses its challenges and opportunities. The development of ivBT is based on the linear strategy of “Design-Build-GoNG-Optimization”, leading to super-biomanufacturing machines that can meet national needs, such as food security and new energy system. To address food security, we propose two out-of-the-box solutions: (1) in vitro biotransformation of cellulose to starch, possibly increasing the starch supply by a factor of 10; (2) artificial starch synthesis from CO2 by combining ivBT and chemical catalysis. Furthermore, the revolutionary production of starch could open a door to the starch-based carbohydrate economy, wherein starch is a high-density hydrogen carrier, more than 2.5 times that of compressed hydrogen, and an ultra-high electricity storage compound, more than 10 times that of lithium-ion battery. In a word, ivBT featuring ultra-high energy efficiency and potentially-low-cost production could become the third industrial biomanufacturing platform and help address huge challenges.

Key words: in vitro synthetic biology, industrial biomanufacturing, in vitro biotransformation, in vitro synthetic enzymatic biosystem, food security

中图分类号: