合成生物学 ›› 2024, Vol. 5 ›› Issue (6): 1231-1241.DOI: 10.12211/2096-8280.2023-066
张以恒1,2,3
收稿日期:
2023-09-14
修回日期:
2023-12-08
出版日期:
2024-12-31
发布日期:
2025-01-10
通讯作者:
张以恒
作者简介:
基金资助:
Yi-Heng P. Job ZHANG1,2,3
Received:
2023-09-14
Revised:
2023-12-08
Online:
2024-12-31
Published:
2025-01-10
Contact:
Yi-Heng P. Job ZHANG
摘要:
生物制造是利用生物体(如植物、动物、微生物、酶、体外多酶分子机器等)的机能进行物质加工与合成的绿色生产方式,将在能源、农业、化工和医药等领域改变世界工业制造格局,是科技战必争之地。作者应用中国古代哲学的“道、法、术、器”思想“道以明向,法以立本,术以立策,器以成事”,对工业生物制造的道与法进行解释与剖析,阐明顶层设计对生物制造的哲学指导意义。以美国合成生物学先驱公司Amyris为例,作者分析与讨论该公司产品选择以及隐含“道与法”,尽管该公司具有优秀“术与器”,但是走错道与不懂法决定该公司的失败命运。同时,作者简单地讨论两个人工淀粉合成技术的经济可能性与未来技术研发方向。总之,中国古代哲学思想“大道至简,从上而下,以道御术”,将对工业生物制造的未来发展提供顶层设计方法学上的启发与指导,将更有效地应对粮食安全、双碳目标与可持续发展等重大挑战。
中图分类号:
张以恒. 中国哲学思想“道法术器”对生物制造的启示[J]. 合成生物学, 2024, 5(6): 1231-1241.
Yi-Heng P. Job ZHANG. The enlightenment of the Chinese philosophy “Tao-Fa-Shu-Qi” to industrial biomanufacturing[J]. Synthetic Biology Journal, 2024, 5(6): 1231-1241.
图1 中国哲学中“道法术器”关系
Fig. 1 Scheme of the relationship among “Tao-Fa-Shu-Qi” in ancient Chinese philosophy, wherein “Tao is a way or direction, Fa is rules, Shu is techniques, and Qi is tools for accomplishing goals”. In a word, the way is simple, from top to down, the way guides techniques and tools.
图2 生物制造的道(生产方式的选择)与法(生产方式的限制性边际)逻辑关系
Fig. 2 Scheme of the logic relationship between Tao and Fa, wherein Tao of industrial biomanufacturing is the selection of the right biomanufacturing way from natural collection, planting-extraction, cultivating-extraction, microbial fermentation, enzymatic biocatalysis to in vitro Biotransformation; and Fa is rules that determine limitations of biomanufacturing involving the principle of conversation of mass, the principles of thermodynamics, the principles of enzymology, kinetics, bioenergetics, reaction and reactor engineering; the prices, renewability, limits and scalability of natural resources, as well as selling prices, market size, profitability, market size of manufactured products.
1 | ZHANG Y H P, SUN J B, MA Y H. Biomanufacturing: history and perspective[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(4): 773-784. |
2 | 李寅. 合成生物制造2022[J]. 生物工程学报, 2023, 39(3): 807-841. |
LI Y. Biomanufacturing driven by engineered organisms(2022)[J]. Chinese Journal of Biotechnology, 2023, 39(3): 807-841. | |
3 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
TAN T W, CHEN B Q, ZHANG H L, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
4 | 马延和. 生物制造产业是生物经济重点发展方向[J]. 中国生物工程杂志, 2022, 42(5): 4-5. |
MA Y H. Bio-manufacturing industry is the key development direction of bio-economy[J]. China Biotechnology, 2022, 42(5): 4-5. | |
5 | 张媛媛, 曾艳, 王钦宏. 合成生物制造进展[J]. 合成生物学, 2021, 2(2): 145-160. |
ZHANG Y Y, ZENG Y, WANG Q H. Advances in synthetic biomanufacturing[J]. Synthetic Biology Journal, 2021, 2(2): 145-160. | |
6 | 金城. 微生物酶工程: 绿色生物制造的基石[J]. 微生物学通报, 2020, 47(7): 2001-2002. |
JIN C. Microbial enzyme engineering: ornerstone of biological manufacturing[J]. Microbiology China, 2020, 47(7): 2001-2002. | |
7 | ZHANG Y H P. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: Challenges and opportunities[J]. Biotechnology and Bioengineering, 2010, 105(4): 663-677. |
8 | 刘建明, 曾安平. 无细胞多酶分子机器赋能二氧化碳的高值利用及其挑战[J]. 合成生物学, 2022, 3(5): 825-832. |
LIU J M, ZENG A P. Cell-free multi-enzyme machines for CO2 capture, utilization and its associated challenges[J]. Synthetic Biology Journal, 2022, 3(5): 825-832. | |
9 | ZHANG Y H P J, ZHU Z G, YOU C, et al. In vitro BioTransformation (ivBT): definitions, opportunities, and challenges[J]. Synthetic Biology and Engineering, 2023, 1(2): 10013. |
10 | CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
11 | XU X X, ZHANG W, YOU C, et al. Biosynthesis of artificial starch and microbial protein from agricultural residue[J]. Science Bulletin, 2023, 68(2): 214-223. |
12 | YOU C, CHEN H G, MYUNG S, et al. Enzymatic transformation of nonfood biomass to starch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(18): 7182-7187. |
13 | HAN P P, WANG X Y, LI Y J, et al. Synthesis of a healthy sweetener D-tagatose from starch catalyzed by semiartificial cell factories[J]. Journal of Agricultural and Food Chemistry, 2023, 71(8): 3813-3820. |
14 | LI Y J, SHI T, HAN P P, et al. Thermodynamics-driven production of value-added D-allulose from inexpensive starch by an in vitro enzymatic synthetic biosystem[J]. ACS Catalysis, 2021, 11(9): 5088-5099. |
15 | YANG J G, SONG W, CAI T, et al. De novo artificial synthesis of hexoses from carbon dioxide[J]. Science Bulletin, 2023, 68(20): 2370-2381. |
16 | YOU C, SHI T, LI Y J, et al. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch[J]. Biotechnology and Bioengineering, 2017, 114(8): 1855-1864. |
17 | ZHANG Y H P, EVANS B R, MIELENZ J R, et al. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway[J]. PLoS One, 2007, 2(5): e456. |
18 | 宋云洪, 吴冉冉, 魏欣蕾, 等. 电-氢-糖循环的新能源体系研究进展[J]. 生物工程学报, 2022, 38(11): 4081-4100. |
SONG Y H, WU R R, WEI X L, et al. Advances in a new energy system based on electricity-hydrogen-carbohydrate cycle[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4081-4100. | |
19 | KIM E J, KIM J E, ZHANG Y H P J. Ultra-rapid rates of water splitting for biohydrogen gas production through in vitro artificial enzymatic pathways[J]. Energy & Environmental Science, 2018, 11(8): 2064-2072. |
20 | ZHU Z G, KIN TAM T, SUN F F, et al. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway[J]. Nature Communications, 2014, 5: 3026. |
21 | 熊检. “中国制造2025”和德国“工业4.0”对比研究[J]. 中国集体经济, 2019(10): 86-87. |
XIONG J. A comparative study of “made in China 2025” and “industry 4.0” in Germany[J]. China Collective Economy, 2019(10): 86-87. | |
22 | 韩祺, 姜江, 汪琪琦, 等. 我国工业生物技术和产业的现状、差距与任务[J]. 生物工程学报, 2022, 38(11): 4035-4042. |
HAN Q, JIANG J, WANG Q Q, et al. The Current situation and developmental trends of industrial biotechnology and biomanufacturing in China[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4035-4042. | |
23 | HEUX S, MEYNIAL-SALLES I, O’DONOHUE M J, et al. White biotechnology: state of the art strategies for the development of biocatalysts for biorefining[J]. Biotechnology Advances, 2015, 33(8): 1653-1670. |
24 | DEMAIN A L. Pickles, pectin, and penicillin[J]. Annual Review of Microbiology, 2004, 58: 1-42. |
25 | DEMAIN A L. Microbial biotechnology[J]. Trends in Biotechnology, 2000, 18(1): 26-31. |
26 | DEMAIN A L, VAISHNAV P. Production of recombinant proteins by microbes and higher organisms[J]. Biotechnology Advances, 2009, 27(3): 297-306. |
27 | CHEN K, ARNOLD F H. Engineering new catalytic activities in enzymes[J]. Nature Catalysis, 2020, 3(3): 203-213. |
28 | 吴明蔚, 罗中华. 中国哲学思维模式下“道”“法”“术”的研究[J]. 文化学刊, 2021(9): 93-96. |
WU M W, LUO Z H. A study of Tao, law and skill in China’s philosophical thinking mode[J]. Culture Journal, 2021(9): 93-96. | |
29 | 刘宽庆, 张以恒. 木质素的生物降解和生物利用[J]. 合成生物学, 2024,5(6): 1264-1278. |
LIU K Q, ZHANG Y-H P J. Biological degradation and utilization of lignin[J]. Synthetic Biology Journal, 2024,5(6): 1264-1278. | |
30 | HAN P P, YOU C, LI Y J, et al. High-titer production of myo-inositol by a co-immobilized four-enzyme cocktail in biomimetic mineralized microcapsules[J]. Chemical Engineering Journal, 2023, 461: 141946. |
31 | YOU R, WANG L, SHI C R, et al. Efficient production of myo-inositol in Escherichia coli through metabolic engineering[J]. Microbial Cell Factories, 2020, 19(1): 109. |
32 | ZHANG Q Q, WANG X L, LUO H Y, et al. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism[J]. Microbial Cell Factories, 2022, 21(1): 112. |
33 | TANG E J, SHEN X L, WANG J, et al. Synergetic utilization of glucose and glycerol for efficient myo-inositol biosynthesis[J]. Biotechnology and Bioengineering, 2020, 117(4): 1247-1252. |
34 | ZHANG Y H P. What is vital (and not vital) to advance economically-competitive biofuels production[J]. Process Biochemistry, 2011, 46(11): 2091-2110. |
35 | SMIL V. Energies: an illustrated guide to the biosphere and civilization[M/OL]. Cambridge, Massachusetts: MIT Press, 1998[2023-09-01]. . |
36 | ZHU X G, LONG S P, ORT D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?[J]. Current Opinion in Biotechnology, 2008, 19(2): 153-159. |
37 | ZHANG Y H P, YOU C, CHEN H G, et al. Surpassing photosynthesis: high-efficiency and scalable CO2 utilization through artificial photosynthesis[M/OL]// ACS Symposium Series. Recent advances in post-combustion CO2 capture chemistry. Washington, DC: American Chemical Society, 2012: 275-292 [2023-09-01]. . |
38 | REECE S Y, HAMEL J A, SUNG K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J]. Science, 2011, 334(6056): 645-648. |
39 | ESSWEIN A J, NOCERA D G. Hydrogen production by molecular photocatalysis[J]. Chemical Reviews, 2007, 107(10): 4022-4047. |
40 | ZHANG Y H P. Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus[J]. Energy Science & Engineering, 2013, 1(1): 27-41. |
41 | LE B WILLIAMS P J, LAURENS L M L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics[J]. Energy & Environmental Science, 2010, 3(5): 554-590. |
42 | HAMMARSTRÖM L, WINKLER J R, GRAY H B, et al. Shedding light on solar fuel efficiencies[J]. Science, 2011, 333(6040): 288. |
43 | GRAY H B. Powering the planet with solar fuel[J]. Nature Chemistry, 2009, 1(1): 7. |
44 | 王中林. 纳米发电机将改变世界[J]. 电力设备管理, 2019(1): 96. |
WANG Z L. Nanogenerators will change the world[J]. Power Equipment Management, 2019(1): 96. | |
45 | 刘邦凡, 栗俊杰, 王玲玉. 我国潮汐能发电的研究与发展[J]. 水电与新能源, 2018, 32(11): 1-6. |
LIU B F, LI J J, WANG L Y. Research and development of tidal power generation in China[J]. Hydropower and New Energy, 2018, 32(11): 1-6. | |
46 | CHHEDA J, HUBER G, DUMESIC J. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie International Edition, 2007, 46(38): 7164-7183. |
47 | HUANG W D, ZHANG Y H. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems[J]. PLoS One, 2011, 6(7): e22113. |
48 | LYND L R, WYMAN C E, GERNGROSS T U. Biocommodity engineering[J]. Biotechnology Progress, 1999, 15(5): 777-793. |
49 | HUANG W D, ZHANG Y H P. Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation[J]. Energy & Environmental Science, 2011, 4(3): 784-792. |
50 | STEEN E J, KANG Y S, BOKINSKY G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass[J]. Nature, 2010, 463(7280): 559-562. |
51 | ZHONG C, WEI P, ZHANG Y H P. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons[J]. Biotechnology and Bioengineering, 2017, 114(5): 1054-1064. |
52 | 刘阳, 郭小翠, 耿金慧, 等. 体外合成生物学: 无细胞蛋白合成系统研究进展[J]. 科学通报, 2017, 62(33): 3851-3860. |
LIU Y, GUO X C, GENG J H, et al. In vitro synthetic biology: cell-free protein synthesis[J]. Chinese Science Bulletin, 2017, 62(33): 3851-3860. | |
53 | RO D K, PARADISE E M, OUELLET M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
54 | GALANIE S, THODEY K, TRENCHARD I J, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100. |
55 | PERALTA-YAHYA P P, ZHANG F Z, DEL CARDAYRE S B, et al. Microbial engineering for the production of advanced biofuels[J]. Nature, 2012, 488(7411): 320-328. |
56 | ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. |
57 | LUO X Z, REITER M A, D’ESPAUX L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746): 123-126. |
58 | FAO. Population nutrient intake goals for preventing diet-related chronic diseases[EB/OL][2023-09-01]. . |
59 | 闫琰, 王秀东, 王济民, 等. “双循环”背景下国家粮食安全战略研究[J]. 中国工程科学, 2023, 25(4): 14-25. |
YAN Y, WANG X D, WANG J M, et al. National food security strategy against the backdrop of domestic and international dual circulation[J]. Strategic Study of CAE, 2023, 25(4): 14-25. | |
60 | 邹碧颖. 中国食物自给率65.8%, 如何构建安全稳定粮食供应保障?[EB/OL]. 观察者.(2022-05-03)[2023-09-01]. . |
ZOU B Y. China’s food self-sufficiency rate is 65. 8 %. How to build a safe and stable food supply guarantee?[EB/OL]. Observer. (2022-05-03)[2023-09-01]. . | |
61 | CHOI C. Could wood feed the world? Researchers develop way to turn inedible plants into food[EB/OL]. Science. (2013-04-15)[2023-09-01]. . |
62 | 张以恒. 忆王义翘教授对生物炼制的贡献和我对此领域未来发展的观点[J]. 合成生物学, 2021, 2(4): 497-508. |
ZHANG Y H. Remembering Professor Daniel I. C. Wang’s contribution to biorefining and my perspective on the progress[J]. Synthetic Biology Journal, 2021, 2(4): 497-508. |
[1] | 邵明威, 孙思勉, 杨时茂, 陈国强. 基于极端微生物的生物制造[J]. 合成生物学, 2024, 5(6): 1419-1436. |
[2] | 柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, 2024, 5(6): 1242-1263. |
[3] | 石婷, 宋展, 宋世怡, 张以恒. 体外生物转化(ivBT):生物制造的新前沿[J]. 合成生物学, 2024, 5(6): 1437-1460. |
[4] | 赵亮, 李振帅, 付丽平, 吕明, 王士安, 张全, 刘立成, 李福利, 刘自勇. 生物转化一碳化合物原料产油脂与单细胞蛋白研究进展[J]. 合成生物学, 2024, 5(6): 1300-1318. |
[5] | 刘建明, 张炽坚, 张冰, 曾安平. 巴氏梭菌作为工业底盘细胞高效生产1,3-丙二醇——从代谢工程和菌种进化到过程工程和产品分离[J]. 合成生物学, 2024, 5(6): 1386-1403. |
[6] | 程峰, 邹树平, 徐建妙, 汤恒, 薛亚平, 郑裕国. 生物高纯精草:高光学纯L-草铵膦生物制造的创新与发展[J]. 合成生物学, 2024, 5(6): 1404-1418. |
[7] | 张晨悦, 马英群, 王兴, 傅容湛, 黄技伟, 花秀夫, 范代娣, 费强. 全碳素生物转化沼气制备生物航煤制造路线研究进展[J]. 合成生物学, 2023, 4(6): 1246-1258. |
[8] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[9] | 孙美莉, 王凯峰, 陆然, 纪晓俊. 解脂耶氏酵母底盘细胞的工程改造及应用[J]. 合成生物学, 2023, 4(4): 779-807. |
[10] | 张璨, 施李杨, 戴建武. 细胞培养肉用生物材料的设计[J]. 合成生物学, 2022, 3(4): 676-689. |
[11] | 王倩, 祁庆生. 聚羟基脂肪酸酯的低碳生物制造:基于碳转化率的分析与应用[J]. 合成生物学, 2022, 3(4): 748-762. |
[12] | 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战[J]. 合成生物学, 2021, 2(6): 854-862. |
[13] | 张晓龙, 王晨芸, 刘延峰, 李江华, 刘龙, 堵国成. 基于合成生物技术构建高效生物制造系统的研究进展[J]. 合成生物学, 2021, 2(6): 863-875. |
[14] | 熊亮斌, 宋璐, 赵云秋, 刘坤, 刘勇军, 王风清, 魏东芝. 甾体化合物绿色生物制造:从生物转化到微生物从头合成[J]. 合成生物学, 2021, 2(6): 942-963. |
[15] | 张以恒. 忆王义翘教授对生物炼制的贡献和我对此领域未来发展的观点[J]. 合成生物学, 2021, 2(4): 497-508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||