合成生物学 ›› 2024, Vol. 5 ›› Issue (6): 1242-1263.DOI: 10.12211/2096-8280.2024-011
柴猛1,2, 王风清1,2,3, 魏东芝1,2,3
收稿日期:
2024-01-23
修回日期:
2024-04-24
出版日期:
2024-12-31
发布日期:
2025-01-10
通讯作者:
王风清,魏东芝
作者简介:
基金资助:
CHAI Meng1,2, WANG Fengqing1,2,3, WEI Dongzhi1,2,3
Received:
2024-01-23
Revised:
2024-04-24
Online:
2024-12-31
Published:
2025-01-10
Contact:
WANG Fengqing, WEI Dongzhi
摘要:
开发环境友好型的生物可降解材料,被公认为是解决“白色污染”的重要途径。作为制备生物可降解材料的主要原料之一,有机酸的绿色高效制造备受关注。木质纤维素是储量庞大且可再生的自然资源,以木质纤维素为原料,通过生物转化的方式生产有机酸,是发展绿色可降解生物基材料的理想途径,具有过程绿色低碳的优势,符合绿色可持续发展经济的需求。近年来,人们针对木质纤维素的生物炼制开展了大量研究,并在生物转化合成有机酸等领域取得了重要进展,特别是在高产有机酸微生物细胞工厂的设计开发上不断取得突破,使得生物基有机酸的生产水平屡创新高,丁二酸等品种的产量甚至突破了150 g/L,积极推动了生物基可降解材料产业的形成和发展。本文介绍了木质纤维素的组分并总结了木质纤维素的物理预处理法、化学预处理法、生物预处理法、物理-化学共处理法和化学-生物共处理法等多种预处理技术,以及抑制物的脱毒技术、还原催化分馏工艺、催化剂的回收、偶联木质纤维素水解和发酵的制造工艺。并以木质纤维素为原料合成的高价值有机酸(丁二酸、3-羟基丙酸、黏康酸、2,5-呋喃二甲酸和2-吡喃酮-4,6-二羧酸)为例,从这些有机酸的生物合成途径,合成生物学改造策略和发酵条件优化等角度探讨了这些有机酸的研究现状。最后,对当前生物可降解材料产业链的发展趋势进行了总结和展望,讨论了开发新型预处理技术和优化联合生物处理工艺等策略对木质纤维素组分解离和利用的重要意义,并从提高微生物细胞工厂的鲁棒性以及设计木质纤维素的综合转化途径等方面进行系统分析,以期能为有机酸的工业化生产提供参考。
中图分类号:
柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, 2024, 5(6): 1242-1263.
CHAI Meng, WANG Fengqing, WEI Dongzhi. Synthesis of organic acids from lignocellulose by biotransformation[J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263.
1 | SEWWANDI M, WIJESEKARA H, RAJAPAKSHA A U, et al. Microplastics and plastics-associated contaminants in food and beverages; global trends, concentrations, and human exposure[J]. Environmental Pollution, 2023, 317: 120747. |
2 | SINGH JADAUN J, BANSAL S, SONTHALIA A, et al. Biodegradation of plastics for sustainable environment[J]. Bioresource Technology, 2022, 347: 126697. |
3 | WANG S Y, CHENG A H, LIU F H, et al. Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view[J]. Industrial Chemistry & Materials, 2023, 1(2): 188-206. |
4 | PEI F Y, LIU L J, ZHU H E, et al. Recent advances in lignocellulose-based monomers and their polymerization[J]. Polymers, 2023, 15(4): 829. |
5 | IDRIS S N, AMELIA T S M, BHUBALAN K, et al. The degradation of single-use plastics and commercially viable bioplastics in the environment: a review[J]. Environmental Research, 2023, 231(Pt 1): 115988. |
6 | BACHA A U R, NABI I, ZAHEER M, et al. Biodegradation of macro- and micro-plastics in environment: a review on mechanism, toxicity, and future perspectives[J]. The Science of the Total Environment, 2023, 858(Pt 3): 160108. |
7 | ZIA K M, NOREEN A, ZUBER M, et al. Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review[J]. International Journal of Biological Macromolecules, 2016, 82: 1028-1040. |
8 | 陈龙, 余强, 庄新姝, 等. 木质纤维素类生物基材料研究进展[J]. 材料导报, 2018, 32(S2): 223-228. |
CHEN L, YU Q, ZHUANG X S, et al. Research progress in lignocellulose bio-based materials[J]. Materials Reports, 2018, 32(S2): 223-228. | |
9 | ZHAO L, SUN Z F, ZHANG C C, et al. Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives[J]. Bioresource Technology, 2022, 343: 126123. |
10 | LIU H, LIU Z H, ZHANG R K, et al. Bacterial conversion routes for lignin valorization[J]. Biotechnology Advances, 2022, 60: 108000. |
11 | 陈沁, 杜杰毫, 谢海波, 等. 生物基可聚合单体及其聚合物制备与性能研究进展[J]. 高分子学报, 2016(10): 1330-1358. |
CHEN Q, DU J H, XIE H B, et al. Studies on preparation and properties of bio-based polymeric monomers and their bio-based polymers[J]. Acta Polymerica Sinica, 2016(10): 1330-1358. | |
12 | HAN X, LIU J Q, TIAN S, et al. Microbial cell factories for bio-based biodegradable plastics production[J]. iScience, 2022, 25(11): 105462. |
13 | 支睿, 卢艳波, 王敏, 等. 生物可降解塑料单体二元羧酸的生物合成研究进展[J]. 生物工程学报, 2023, 39(5): 2081-2094. |
ZHI R, LU Y B, WANG M, et al. Recent progress in the biosynthesis of dicarboxylic acids, a monomer of biodegradable plastics[J]. Chinese Journal of Biotechnology, 2023, 39(5): 2081-2094. | |
14 | WANG J, SHIRVANI H, ZHAO H, et al. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems[J]. Biotechnology Advances, 2023, 66: 108157. |
15 | 刘宽庆,张以恒. 木质素的生物降解和生物利用 [J]. 合成生物学, 2024, 5(6):1264-1278. |
LIU K Q, ZHANG Y-H P J. Biological degradation and utilization of lignin[J]. Synthetic Biology Journal, 2024, 5(6):1264-1278. | |
16 | BECKER J, WITTMANN C. A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances, 2019, 37(6): 107360. |
17 | 曹玉连, 庄伟, 唐成伦, 等. 木质纤维素预处理实现组分综合利用[J]. 生物加工过程, 2024, 22(2): 119-130. |
CAO Y L, ZHUANG W, TANG C L, et al. Advances on comprehensive utilization of lignocellulose through pretreatment technology[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(2): 119-130. | |
18 | ROY R, RAHMAN M S, RAYNIE D E. Recent advances of greener pretreatment technologies of lignocellulose[J]. Current Research in Green and Sustainable Chemistry, 2020, 3: 100035. |
19 | SOHN Y J, SON J N, LIM H J, et al. Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: status and perspectives[J]. Bioresource Technology, 2022, 360: 127575. |
20 | BAI X P, WANG G H, YU Y, et al. Changes in the physicochemical structure and pyrolysis characteristics of wheat straw after rod-milling pretreatment[J]. Bioresource Technology, 2018, 250: 770-776. |
21 | DHARMARAJA J, SHOBANA S, ARVINDNARAYAN S, et al. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications[J]. Bioresource Technology, 2023, 369: 128328. |
22 | SUBHEDAR P B, RAY P, GOGATE P R. Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2018, 40(Pt B): 140-150. |
23 | MANKAR A R, PANDEY A, MODAK A, et al. Pretreatment of lignocellulosic biomass: a review on recent advances[J]. Bioresource Technology, 2021, 334: 125235. |
24 | SHANGDIAR S, LIN Y C, PONNUSAMY V K, et al. Pretreatment of lignocellulosic biomass from sugar bagasse under microwave assisted dilute acid hydrolysis for biobutanol production[J]. Bioresource Technology, 2022, 361: 127724. |
25 | HUANG Y F, CHIUEH P T, KUAN W H, et al. Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics[J]. Energy, 2016, 100: 137-144. |
26 | SCHNABEL T, HUBER H, GRÜNEWALD T A, et al. Changes in mechanical and chemical wood properties by electron beam irradiation[J]. Applied Surface Science, 2015, 332: 704-709. |
27 | SU X J, ZHANG C Y, LI W J, et al. Radiation-induced structural changes of Miscanthus biomass[J]. Applied Sciences, 2020, 10(3): 1130. |
28 | KUMAR P, BARRETT D M, DELWICHE M J, et al. Pulsed electric field pretreatment of switchgrass and wood chip species for biofuel production[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 10996-11001. |
29 | KOVAČIĆ Đ, RUPČIĆ S, KRALIK D, et al. Pulsed electric field: an emerging pretreatment technology in a biogas production[J]. Waste Management, 2021, 120: 467-483. |
30 | ESCOBAR E L N, SILVA T A DA, PIRICH C L, et al. Supercritical fluids: a promising technique for biomass pretreatment and fractionation[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 252. |
31 | VANNESTE J, ENNAERT T, VANHULSEL A, et al. Unconventional pretreatment of lignocellulose with low-temperature plasma[J]. ChemSusChem, 2017, 10(1): 14-31. |
32 | GONZALES R R, SIVAGURUNATHAN P, KIM S H. Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21678-21684. |
33 | BOLADO-RODRÍGUEZ S, TOQUERO C, MARTÍN-JUÁREZ J, et al. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse[J]. Bioresource Technology, 2016, 201: 182-190. |
34 | DONG L L, CAO G L, ZHAO L, et al. Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production[J]. Bioresource Technology, 2018, 267: 71-76. |
35 | SANTOS L C D, ADARME O F H, BAÊTA B E L, et al. Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks[J]. Bioresource Technology, 2018, 263: 601-612. |
36 | ZHAO C, DING W M, CHEN F, et al. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility[J]. Bioresource Technology, 2014, 155: 34-40. |
37 | ZHANG J X, ZHANG X, YANG M K, et al. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment[J]. Bioresource Technology, 2021, 322: 124522. |
38 | KUMAR B, BHARDWAJ N, AGRAWAL K, et al. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept[J]. Fuel Processing Technology, 2020, 199: 106244. |
39 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1): 70-71. |
40 | KALHOR P, GHANDI K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste[J]. Molecules, 2019, 24(22): 4012. |
41 | ANDLAR M, REZIĆ T, MARĐETKO N, et al. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation[J]. Engineering in Life Sciences, 2018, 18(11): 768-778. |
42 | XU W Y, FU S F, YANG Z M, et al. Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system[J]. Bioresource Technology, 2018, 259: 18-23. |
43 | LI H J, YELLE D J, LI C, et al. Lignocellulose pretreatment in a fungus-cultivating termite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4709-4714. |
44 | AGBOR V B, CICEK N, SPARLING R, et al. Biomass pretreatment: fundamentals toward application[J]. Biotechnology Advances, 2011, 29(6): 675-685. |
45 | SOARES RODRIGUES C I, JACKSON J J, MONTROSS M D. A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions[J]. Industrial Crops and Products, 2016, 92: 165-173. |
46 | MOKOMELE T, COSTA SOUSA L DA, BALAN V, et al. Incorporating anaerobic co-digestion of steam exploded or ammonia fiber expansion pretreated sugarcane residues with manure into a sugarcane-based bioenergy-livestock nexus[J]. Bioresource Technology, 2019, 272: 326-336. |
47 | YAN X, WANG Z R, ZHANG K J, et al. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2017, 245(Pt A): 419-425. |
48 | LIU Z H, OLSON M L, SHINDE S, et al. Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment[J]. Green Chemistry, 2017, 19(20): 4939-4955. |
49 | 杨莉, 谭丽萍, 刘同军. 木质纤维素预处理抑制物产生及脱除方法的研究进展[J]. 生物工程学报, 2021, 37(1): 15-29. |
YANG L, TAN L P, LIU T J. Progress in detoxification of inhibitors generated during lignocellulose pretreatment[J]. Chinese Journal of Biotechnology, 2021, 37(1): 15-29. | |
50 | CARTER B, SQUILLACE P, GILCREASE P C, et al. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency[J]. Biotechnology and Bioengineering, 2011, 108(9): 2053-2060. |
51 | ZHANG Y Q, LI M, WANG Y F, et al. Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane distillation coupled with adsorption[J]. Bioresource Technology, 2015, 197: 276-283. |
52 | HAQ I, ARSHAD Y, NAWAZ A, et al. Removal of phenolic compounds through overliming for enhanced saccharification of wheat straw[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(10): 3011-3017. |
53 | SOUDHAM V P, BRANDBERG T, MIKKOLA J P, et al. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation[J]. Bioresource Technology, 2014, 166: 559-565. |
54 | XIE R, TU M B, CARVIN J, et al. Detoxification of biomass hydrolysates with nucleophilic amino acids enhances alcoholic fermentation[J]. Bioresource Technology, 2015, 186: 106-113. |
55 | TRAMONTINA R, BRENELLI L B, SOUSA A, et al. Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms[J]. Enzyme and Microbial Technology, 2020, 135: 109490. |
56 | LIU Z L, MA M G. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3473-3492. |
57 | SANTOS J C, MARTON J M, FELIPE M G A. Continuous system of combined columns of ion exchange resins and activated charcoal as a new approach for the removal of toxics from sugar cane bagasse hemicellulosic hydrolysate[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16494-16501. |
58 | LI X, XU Y, ALORKU K, et al. A review of lignin-first reductive catalytic fractionation of lignocellulose[J]. Molecular Catalysis, 2023, 550: 113551. |
59 | PARSELL T, YOHE S, DEGENSTEIN J, et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J]. Green Chemistry, 2015, 17(3): 1492-1499. |
60 | LI Y L, YU Y Y, LOU Y H, et al. Hydrogen-transfer reductive catalytic fractionation of lignocellulose: high monomeric yield with switchable selectivity[J]. Angewandte Chemie International Edition, 2023, 62(32): e202307116. |
61 | FACAS G G, BRANDNER D G, BUSSARD J R, et al. Interdependence of solvent and catalyst selection on low pressure hydrogen-free reductive catalytic fractionation[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(12): 4517-4522. |
62 | ZHAN Q W, LIN Q X, WU Y, et al. A fractionation strategy of cellulose, hemicellulose, and lignin from wheat straw via the biphasic pretreatment for biomass valorization[J]. Bioresource Technology, 2023, 376: 128887. |
63 | GUO T Y, LI X C, LIU X H, et al. Catalytic transformation of lignocellulosic biomass into arenes, 5-hydroxymethylfurfural, and furfural[J]. ChemSusChem, 2018, 11(16): 2758-2765. |
64 | SUN Z H, BOTTARI G, AFANASENKO A, et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels[J]. Nature Catalysis, 2018, 1: 82-92. |
65 | LU J S, LI J W, GAO H, et al. Recent progress on bio-succinic acid production from lignocellulosic biomass[J]. World Journal of Microbiology & Biotechnology, 2021, 37(1): 16. |
66 | LIU S Y, LIU Y J, FENG Y G, et al. Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization[J]. Biotechnology for Biofuels, 2019, 12: 35. |
67 | LIU X T, ZHAO G, SUN S J, et al. Biosynthetic pathway and metabolic engineering of succinic acid[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 843887. |
68 | AHN J H, JANG Y S, LEE S Y. Production of succinic acid by metabolically engineered microorganisms[J]. Current Opinion in Biotechnology, 2016, 42: 54-66. |
69 | NARISETTY V, OKIBE M C, AMULYA K, et al. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production[J]. Bioresource Technology, 2022, 360: 127513. |
70 | ZHU L W, TANG Y J. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli [J]. Biotechnology Advances, 2017, 35(8): 1040-1048. |
71 | STOLS L, KULKARNI G, HARRIS B G, et al. Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose[J]. Applied Biochemistry and Biotechnology, 1997, 63-65: 153-158. |
72 | CHEN C X, DING S P, WANG D Z, et al. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111[J]. Bioresource Technology, 2014, 163: 100-105. |
73 | VEMURI G N, EITEMAN M A, ALTMAN E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 28(6): 325-332. |
74 | WANG D, LI Q, SONG Z Y, et al. High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 512-518. |
75 | MA J F, LI F, LIU R M, et al. Succinic acid production from sucrose and molasses by metabolically engineered E. coli using a cell surface display system[J]. Biochemical Engineering Journal, 2014, 91: 240-249. |
76 | CHUNG S C, PARK J S, YUN J E, et al. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum [J]. Metabolic Engineering, 2017, 40: 157-164. |
77 | OKINO S, NOBURYU R, SUDA M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 459-464. |
78 | YAN D J, WANG C X, ZHOU J M, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value[J]. Bioresource Technology, 2014, 156: 232-239. |
79 | CUI Z Y, ZHONG Y T, SUN Z J, et al. Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica [J]. Nature Communications, 2023, 14(1): 8480. |
80 | GUARNIERI M T, CHOU Y C, SALVACHÚA D, et al. Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis[J]. Applied and Environmental Microbiology, 2017, 83(17): e00996-17. |
81 | GAO C J, YANG X F, WANG H M, et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica [J]. Biotechnology for Biofuels, 2016, 9(1): 179. |
82 | ZHENG P, FANG L, XU Y, et al. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes [J]. Bioresource Technology, 2010, 101(20): 7889-7894. |
83 | WANG X, YOMANO L P, LEE J Y, et al. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(10): 4021-4026. |
84 | LU J S, LV Y, JIANG Y J, et al. Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9035-9045. |
85 | LYND L R, VAN ZYL W H, MCBRIDE J E, et al. Consolidated bioprocessing of cellulosic biomass: an update[J]. Current Opinion in Biotechnology, 2005, 16(5): 577-583. |
86 | HEO W, KIM J H, KIM S, et al. Enhanced production of 3-hydroxypropionic acid from glucose and xylose by alleviation of metabolic congestion due to glycerol flux in engineered Escherichia coli [J]. Bioresource Technology, 2019, 285: 121320. |
87 | 詹元龙, 赵瑞英, 崔鸿亮, 等. 生物合成3-羟基丙酸的代谢工程研究进展[J]. 生物工程学报, 2020, 36(6): 1101-1112. |
ZHAN Y L, ZHAO R Y, CUI H L, et al. Progress in metabolic engineering of biosynthesis of 3-hydroxypropionic acid[J]. Chinese Journal of Biotechnology, 2020, 36(6): 1101-1112. | |
88 | WANG X D, CUI Z Z, SUN X, et al. Production of 3-hydroxypropionic acid from renewable substrates by metabolically engineered microorganisms: a review[J]. Molecules, 2023, 28(4): 1888. |
89 | LIU D, HWANG H J, OTOUPAL P B, et al. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate[J]. Metabolic Engineering, 2023, 78: 72-83. |
90 | GAO J Q, YU W, LI Y X, et al. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose[J]. Nature Chemical Biology, 2023, 19(12): 1524-1531. |
91 | DAI Z Y, POMRANING K R, DENG S, et al. Metabolic engineering to improve production of 3-hydroxypropionic acid from corn-stover hydrolysate in Aspergillus species[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 53. |
92 | CHEN Z, HUANG J H, WU Y, et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose[J]. Metabolic Engineering, 2017, 39: 151-158. |
93 | ZHAO P, TIAN P F. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria[J]. World Journal of Microbiology and Biotechnology, 2021, 37(7): 117. |
94 | CHOI S S, LEE H N, PARK E H, et al. Recent advances in microbial production of cis,cis-muconic acid[J]. Biomolecules, 2020, 10(9): 1238. |
95 | NICOLAÏ T, DEPARIS Q, FOULQUIÉ-MORENO M R, et al. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain[J]. Microbial Cell Factories, 2021, 20(1): 114. |
96 | WEILAND F, BARTON N, KOHLSTEDT M, et al. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis,cis-muconic acid production from lignin-based aromatics[J]. Metabolic Engineering, 2023, 75: 153-169. |
97 | FUJIWARA R, NODA S, TANAKA T, et al. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate[J]. Nature Communications, 2020, 11(1): 279. |
98 | LING C, PEABODY G L, SALVACHÚA D, et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering[J]. Nature Communications, 2022, 13(1): 4925. |
99 | BECKER J, KUHL M, KOHLSTEDT M, et al. Metabolic engineering of Corynebacterium glutamicum for the production of cis,cis-muconic acid from lignin[J]. Microbial Cell Factories, 2018, 17(1): 115. |
100 | KOHLSTEDT M, STARCK S, BARTON N, et al. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida [J]. Metabolic Engineering, 2018, 47: 279-293. |
101 | WANG G K, ØZMERIH S, GUERREIRO R, et al. Improvement of cis,cis-muconic acid production in Saccharomyces cerevisiae through biosensor-aided genome engineering[J]. ACS Synthetic Biology, 2020, 9(3): 634-646. |
102 | LI X C, ZHANG Y Y, XIA Q N, et al. Acid-free conversion of cellulose to 5-(hydroxymethyl)furfural catalyzed by hot seawater[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3545-3553. |
103 | 蔡佳伟, 李亢悔, 蒋涌泉, 等. HMF制备FDCA的新型催化工艺研究进展[J]. 生物质化学工程, 2022, 56(6): 61-70. |
CAI J W, LI K H, JIANG Y Q, et al. Novel catalytic process for preparing FDCA from HMF[J]. Biomass Chemical Engineering, 2022, 56(6): 61-70. | |
104 | 张雷, 孙启梅, 白富栋, 等. 2,5-呋喃二甲酸合成技术路线及应用前景[J]. 当代化工, 2021, 50(8): 1939-1943. |
ZHANG L, SUN Q M, BAI F D, et al. Synthetic technical route and application prospects of 2,5-furandicarboxylic acid[J]. Contemporary Chemical Industry, 2021, 50(8): 1939-1943. | |
105 | WANG Y B, YU K, LEI D, et al. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4752-4761. |
106 | YUAN H B, LIU H L, DU J K, et al. Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 527-543. |
107 | CARRO J, FERREIRA P, RODRÍGUEZ L, et al. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase[J]. The FEBS Journal, 2015, 282(16): 3218-3229. |
108 | MCKENNA S M, LEIMKÜHLER S, HERTER S, et al. Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem[J]. Green Chemistry, 2015, 17(6): 3271-3275. |
109 | MCKENNA S M, MINES P, LAW P, et al. The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC)[J]. Green Chemistry, 2017, 19(19): 4660-4665. |
110 | KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(11): 4919-4924. |
111 | DIJKMAN W P, GROOTHUIS D E, FRAAIJE M W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid[J]. Angewandte Chemie International Edition, 2014, 53(25): 6515-6518. |
112 | DIJKMAN W P, BINDA C, FRAAIJE M W, et al. Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase[J]. ACS Catalysis, 2015, 5(3): 1833-1839. |
113 | SCHÜÜRMANN J, QUEHL P, FESTEL G, et al. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application[J]. Applied Microbiology and Biotechnology, 2014, 98(19): 8031-8046. |
114 | KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid[J]. Bioresource Technology, 2010, 101(16): 6291-6296. |
115 | YANG C F, HUANG C R. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate[J]. Bioresource Technology, 2016, 214: 311-318. |
116 | YANG C F, HUANG C R. Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2,5-furan dicarboxylic acid in algal acid hydrolysate[J]. Journal of Bioscience and Bioengineering, 2018, 125(4): 407-412. |
117 | YUAN H B, LI J H, SHIN H D, et al. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60[J]. Bioresource Technology, 2018, 247: 1184-1188. |
118 | YUAN H B, LIU Y F, LI J H, et al. Combinatorial synthetic pathway fine-tuning and comparative transcriptomics for metabolic engineering of Raoultella ornithinolytica BF60 to efficiently synthesize 2,5-furandicarboxylic acid[J]. Biotechnology and Bioengineering, 2018, 115(9): 2148-2155. |
119 | YUAN H B, LIU Y F, LV X Q, et al. Enhanced 2,5-furandicarboxylic acid (FDCA) production in Raoultella ornithinolytica BF60 by manipulation of the key genes in FDCA biosynthesis pathway[J]. Journal of Microbiology and Biotechnology, 2018, 28(12): 1999-2008. |
120 | MICHINOBU T, HISHIDA M, SATO M, et al. Polyesters of 2-pyrone-4,6-dicarboxylic acid (PDC) obtained from a metabolic intermediate of lignin[J]. Polymer Journal, 2008, 40(1): 68-75. |
121 | OTSUKA Y, NAKAMURA M, SHIGEHARA K, et al. Efficient production of 2-pyrone 4,6-dicarboxylic acid as a novel polymer-based material from protocatechuate by microbial function[J]. Applied Microbiology and Biotechnology, 2006, 71(5): 608-614. |
122 | MICHINOBU T, BITO M, TANIMURA M, et al. Synthesis and characterization of hybrid biopolymers of L-lactic acid and 2-pyrone-4,6-dicarboxylic acid[J]. Journal of Macromolecular Science, Part A, 2010, 47(6): 564-570. |
123 | LUO Z W, KIM W J, LEE S Y. Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-4,6-dicarboxylic acid from glucose[J]. ACS Synthetic Biology, 2018, 7(9): 2296-2307. |
124 | ZHOU D, WU F L, PENG Y F, et al. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 92. |
125 | LEE S S, JUNG Y J, PARK S J, et al. Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester[J]. Bioresource Technology, 2022, 352: 127106. |
126 | OTSUKA Y, ARAKI T, SUZUKI Y, et al. High-level production of 2-pyrone-4,6-dicarboxylic acid from vanillic acid as a lignin-related aromatic compound by metabolically engineered fermentation to realize industrial valorization processes of lignin[J]. Bioresource Technology, 2023, 377: 128956. |
127 | NOTONIER S, WERNER A Z, KUATSJAH E, et al. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid[J]. Metabolic Engineering, 2021, 65: 111-122. |
128 | MORI K, KAMIMURA N, MASAI E. Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite[J]. Applied Microbiology and Biotechnology, 2018, 102(11): 4807-4816. |
129 | 魏珣, 林长喜. 我国生物基材料产业发展对策与建议[J]. 化学工业, 2022, 40(2): 6-11, 23. |
WEI X, LIN C X. The development strategies and suggestions of domestic bio-based materials industry[J]. Chemical Industry, 2022, 40(2): 6-11, 23. |
[1] | 高歌, 边旗, 王宝俊. 合成基因线路的工程化设计研究进展与展望[J]. 合成生物学, 2025, 6(1): 45-64. |
[2] | 李冀渊, 吴国盛. 合成生物学视域下有机体的两种隐喻[J]. 合成生物学, 2025, 6(1): 190-202. |
[3] | 焦洪涛, 齐蒙, 邵滨, 蒋劲松. DNA数据存储技术的法律治理议题[J]. 合成生物学, 2025, 6(1): 177-189. |
[4] | 唐兴华, 陆钱能, 胡翌霖. 人类世中对合成生物学的哲学反思[J]. 合成生物学, 2025, 6(1): 203-212. |
[5] | 徐怀胜, 石晓龙, 刘晓光, 徐苗苗. DNA存储的关键技术:编码、纠错、随机访问与安全性[J]. 合成生物学, 2025, 6(1): 157-176. |
[6] | 石婷, 宋展, 宋世怡, 张以恒. 体外生物转化(ivBT):生物制造的新前沿[J]. 合成生物学, 2024, 5(6): 1437-1460. |
[7] | 邵明威, 孙思勉, 杨时茂, 陈国强. 基于极端微生物的生物制造[J]. 合成生物学, 2024, 5(6): 1419-1436. |
[8] | 刘益宁, 蒲伟, 杨金星, 王钰. ω-氨基酸与内酰胺的生物合成研究进展[J]. 合成生物学, 2024, 5(6): 1350-1366. |
[9] | 陈雨, 张康, 邱以婧, 程彩云, 殷晶晶, 宋天顺, 谢婧婧. 微生物电合成技术转化二氧化碳研究进展[J]. 合成生物学, 2024, 5(5): 1142-1168. |
[10] | 郑皓天, 李朝风, 刘良叙, 王嘉伟, 李恒润, 倪俊. 负碳人工光合群落的设计、优化与应用[J]. 合成生物学, 2024, 5(5): 1189-1210. |
[11] | 夏孔晨, 徐维华, 吴起. 光酶催化混乱性反应的研究进展[J]. 合成生物学, 2024, 5(5): 997-1020. |
[12] | 陈子苓, 向阳飞. 类器官技术与合成生物学协同研究进展[J]. 合成生物学, 2024, 5(4): 795-812. |
[13] | 蔡冰玉, 谭象天, 李伟. 合成生物学在干细胞工程化改造中的研究进展[J]. 合成生物学, 2024, 5(4): 782-794. |
[14] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[15] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||