合成生物学 ›› 2024, Vol. 5 ›› Issue (6): 1367-1385.DOI: 10.12211/2096-8280.2024-014

• 特约评述 • 上一篇    下一篇

微生物合成二元醇研究进展

竺方欢1, 岑雪聪1, 陈振1,2   

  1. 1.清华大学化学工程系,工业生物催化教育部重点实验室,北京 100084
    2.清华大学合成与系统生物学中心,北京 100084
  • 收稿日期:2024-02-04 修回日期:2024-05-08 出版日期:2024-12-31 发布日期:2025-01-10
  • 通讯作者: 陈振
  • 作者简介:竺方欢(1996—),女,博士研究生。研究方向为二元醇的绿色生物制造。E-mail:zfh21@mails.tsinghua.edu.cn
    岑雪聪(1996—),女,博士研究生。研究方向为二元醇的绿色生物制造。 E-mail:cxc18@mails.tsinghua.edu.cn
    陈振(1983—),男,副教授,博士生导师。研究方向为材料、化学品及生物医药的绿色生物制造。E-mail:zhenchen2013@tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFC2100900);国家自然科学基金(22078172)

Research progress of diols production by microbes

Fanghuan ZHU1, Xuecong CEN1, Zhen CHEN1,2   

  1. 1.Key Laboratory of Industrial Biocatalysis (Ministry of Education),Department of Chemical Engineering,Tsinghua University,Beijing 100084,China
    2.Center for Synthetic and Systems Biology,Tsinghua University,Beijing 100084,China
  • Received:2024-02-04 Revised:2024-05-08 Online:2024-12-31 Published:2025-01-10
  • Contact: Zhen CHEN

摘要:

二元醇是一类重要的大宗化学品,在高分子材料、化妆品、燃料、食品和制药行业有着广泛应用。开发可利用生物质及碳一原料等可再生原料生产二元醇的生物合成路线对于降低化石资源依赖、减少二氧化碳的排放具有重要意义,近年来受到了国内外广泛关注。虽然通过生物法生产1,3-丙二醇、1,3-丁二醇和1,4-丁二醇已实现商业化,但大多数其他二元醇的高效生物合成仍面临挑战,主要原因包括缺乏有效的天然生物合成途径、基因工程菌的产率低等。本综述全面探讨了微生物合成二元醇的最新研究进展,特别是在开发新代谢途径和代谢工程策略方面,以实现C2至C5二元醇的高效生物合成。例如通过对非天然合成途径的设计和构建以实现系列非天然二元醇的生物合成,以及利用非传统的碳源(如木质纤维素等)通过特定的代谢途径和优化策略合成二元醇,为生物合成领域开辟新的道路。此外,本文还讨论了这些生物合成过程向工业应用转化的主要挑战和未来的发展前景,包括廉价和可持续原料的获取、大规模放大过程的复杂性、满足下游特定需求的后提取工艺开发等。

关键词: 二元醇, 生物合成, 代谢工程, 可再生原料, 工业应用

Abstract:

Production of chemicals using renewable bioresources and green biomanufacturing processes is highly important for sustainable bioeconomy. Diols are important bulk chemicals widely used in the production of polymers, cosmetics, fuels, food, and pharmaceutical industries due to their versatile functional properties. Currently, most of diols are produced mainly from fossil resources via energy-cost chemical approaches. The development of biosynthetic routes for the production of diols from renewable resources such as biomass and C1 has garnered significant attention due to its potential in reducing the utilization of fossil resources and carbon dioxide emissions. Although biological production of 1,3-propanediol, 1,3-butanediol and 1,4-butanediol has been commercialized, the biosynthesis of other major diols remains challenging due to the absence of efficient natural biosynthetic pathways and low efficiency of the recombinant microbes. Recent development of metabolic engineering and synthetic biology enables the production of non-natural chemicals via artificial metabolic pathways and novel biological parts, significantly expanding the boundary of biomanufacturing. This review comprehensively explores recent advances in the microbial synthesis of diols, emphasizing the development of new pathways and engineering strategies for the biosynthesis of C2 to C5 diols. Especially, we focus on the innovative approaches include constructing non-natural synthetic pathways to achieve the biosynthesis of non-natural diols, or using alternative carbon sources such as lignocellulose through specific metabolic pathways to synthesize diols. Furthermore, this review also discusses the primary challenges and future perspectives in transforming these biosynthetic processes toward industrial applications. Key challenges involve the accessibility of low-cost and sustainable raw materials, the complexities in scaling up these processes, the development of extraction techniques that cater to specific downstream requirements, and the economic assessment of these processes to ensure profitability and sustainability. These advancements are essential for the economic and environmental viability of producing diols from renewable resources, thereby facilitating the transition to more sustainable industrial practices globally.

Key words: diols, biosynthesis, metabolic engineering, renewable resources, industrial application

中图分类号: