合成生物学 ›› 2024, Vol. 5 ›› Issue (6): 1350-1366.DOI: 10.12211/2096-8280.2024-019
刘益宁1,2, 蒲伟3,4, 杨金星5, 王钰1,2
收稿日期:
2024-02-04
修回日期:
2024-04-25
出版日期:
2024-12-31
发布日期:
2025-01-10
通讯作者:
王钰
作者简介:
基金资助:
LIU Yining1,2, PU Wei3,4, YANG Jinxing5, WANG Yu1,2
Received:
2024-02-04
Revised:
2024-04-25
Online:
2024-12-31
Published:
2025-01-10
Contact:
WANG Yu
摘要:
以可再生碳资源为原料,以工程微生物为核心工具,通过生物制造的方式生产生物基材料等化学品,具有绿色、低碳的优势,已经成为目前研究的热点。ω-氨基酸是氨基和羧基分别位于支链碳链两端的一种非天然氨基酸,其自身环化的产物内酰胺是合成聚酰胺材料(又名尼龙)的关键单体。聚酰胺材料具有广泛的应用与巨大的市场,目前主要通过石化路线生产,生物合成路线仍处于研究阶段,但是近年来进展迅速。本文系统介绍了ω-氨基酸与内酰胺的生物合成研究进展。为合成生物基聚酰胺材料,研究者设计了ω-氨基酸的人工合成途径,挖掘了可环化ω-氨基酸合成内酰胺的关键酶,通过在微生物底盘细胞中组装合成途径,调控和优化代谢流量,开发内酰胺生物传感器并进行高通量筛选,实现了C4~C6的ω-氨基酸和内酰胺的生物合成。尤其以葡萄糖为原料合成戊内酰胺的产量超过70 g/L,生产强度达到约1 g/(L·h),接近可工业化的水平。最后,本文也讨论了目前ω-氨基酸与内酰胺生物合成面临的途径原子经济性低、关键环化酶限速、一碳等非粮原料开发利用不足等挑战。
中图分类号:
刘益宁, 蒲伟, 杨金星, 王钰. ω-氨基酸与内酰胺的生物合成研究进展[J]. 合成生物学, 2024, 5(6): 1350-1366.
LIU Yining, PU Wei, YANG Jinxing, WANG Yu. Recent advances in the biosynthesis of ω-amino acids and lactams[J]. Synthetic Biology Journal, 2024, 5(6): 1350-1366.
1 | GORDILLO SIERRA A R, ALPER H S. Progress in the metabolic engineering of bio-based lactams and their ω-amino acids precursors[J]. Biotechnology Advances, 2020, 43: 107587. |
2 | CHENG J, HU G, XU Y Q, et al. Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle[J]. Metabolic Engineering, 2019, 55: 23-32. |
3 | TURK S C, KLOOSTERMAN W P, NINABER D K, et al. Metabolic engineering toward sustainable production of nylon-6[J]. ACS Synthetic Biology, 2016, 5(1): 65-73. |
4 | LEE J A, KIM J Y, AHN J H, et al. Current advancements in the bio-based production of polyamides[J]. Trends in Chemistry, 2023, 5(12): 873-891. |
5 | BEERTHUIS R, ROTHENBERG G, SHIJU N R. Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables[J]. Green Chemistry, 2015, 17(3): 1341-1361. |
6 | ZHANG J W, BARAJAS J F, BURDU M, et al. Application of an acyl-CoA ligase from Streptomyces aizunensis for lactam biosynthesis[J]. ACS Synthetic Biology, 2017, 6(5): 884-890. |
7 | LEE J W, KIM T Y, JANG Y S, et al. Systems metabolic engineering for chemicals and materials[J]. Trends in Biotechnology, 2011, 29(8): 370-378. |
8 | 王仲霞, 陈春凤, 庄毅, 等. 生物基聚酰胺及其单体研究进展[J]. 精细化工中间体, 2023, 53(4): 11-17. |
WANG Z X, CHEN C F, ZHUANG Y, et al. Progress of bio-based polyamide and its monomer[J]. Fine Chemical Intermediates, 2023, 53(4): 11-17. | |
9 | 陈万丁, 刘艳林, 倪金平, 等. 新型生物基聚酰胺的研究进展[J]. 塑料工业, 2023, 51(9): 8-13, 101. |
CHEN W D, LIU Y L, NI J P, et al. Research progress of novel biobased polyamides[J]. China Plastics Industry, 2023, 51(9): 8-13, 101. | |
10 | LEE J W, KIM H U, CHOI S, et al. Microbial production of building block chemicals and polymers[J]. Current Opinion in Biotechnology, 2011, 22(6): 758-767. |
11 | 周文娟, 付刚, 齐显尼, 等. 发酵工业菌种的迭代创制[J]. 生物工程学报, 2022, 38(11): 4200-4218. |
ZHOU W J, FU G, QI X N, et al. Upgrading microbial strains for fermentation industry[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4200-4218. | |
12 | 马倩, 夏利, 谭淼, 等. 氨基酸生产的代谢工程研究进展与发展趋势[J]. 生物工程学报, 2021, 37(5): 1677-1696. |
MA Q, XIA L, TAN M, et al. Advances and prospects in metabolic engineering for the production of amino acids[J]. Chinese Journal of Biotechnology, 2021, 37(5): 1677-1696. | |
13 | KOGURE T, INUI M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products[J]. Applied Microbiology and Biotechnology, 2018, 102(20): 8685-8705. |
14 | LIU J, XU J Z, RAO Z M, et al. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects[J]. Microbiological Research, 2022, 262: 127101. |
15 | 李学朋, 陈久洲, 张东旭, 等. L-谷氨酸生产关键技术创新与产业化应用[J]. 生物工程学报, 2022, 38(11): 4343-4351. |
LI X P, CHEN J Z, ZHANG D X, et al. Innovation of key technologies in fermentative production of L-glutamate and industrial application[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4343-4351. | |
16 | ZHANG J W, KAO E, WANG G, et al. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone[J]. Metabolic Engineering Communications, 2016, 3: 1-7. |
17 | PARK J Y, JEONG S J, KIM J H. Characterization of a glutamate decarboxylase (GAD) gene from Lactobacillus zymae [J]. Biotechnology Letters, 2014, 36(9): 1791-1799. |
18 | DHAKAL R, BAJPAI V K, BAEK K H. Production of GABA (γ-aminobutyric acid) by microorganisms: a review[J]. Brazilian Journal of Microbiology, 2012, 43(4): 1230-1241. |
19 | KE C R, YANG X W, RAO H X, et al. Whole-cell conversion of L-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli [J]. SpringerPlus, 2016, 5: 591. |
20 | KOMATSUZAKI N, SHIMA J, KAWAMOTO S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods[J]. Food Microbiology, 2005, 22(6): 497-504. |
21 | YANG S Y, LÜ F X, LU Z X, et al. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation[J]. Amino Acids, 2008, 34(3): 473-478. |
22 | WANG Q, LIU X H, FU J H, et al. Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912[J]. Microbial Cell Factories, 2018, 17(1): 80. |
23 | PLOKHOV A Y, GUSYATINER M M, YAMPOLSKAYA T A, et al. Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase[J]. Applied Biochemistry & Biotechnology, 2000, 88(1): 257-265. |
24 | PARK S J, KIM E Y, NOH W, et al. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli [J]. Bioprocess and Biosystems Engineering, 2013, 36(7): 885-892. |
25 | LE VO T D, KO J S, LEE S H, et al. Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for efficient GABA production[J]. Biotechnology & Bioprocess Engineering, 2013, 18(6): 1062-1066. |
26 | LE VO T D, PHAM V D, KO J S, et al. Improvement of gamma-amino butyric acid production by an overexpression of glutamate decarboxylase from Pyrococcus horikoshii in Escherichia coli [J]. Biotechnology & Bioprocess Engineering, 2014, 19(2): 327-331. |
27 | XIONG Q, XU Z, XU L, et al. Efficient production of GABA using recombinant E. coli expressing glutamate decarboxylase (GAD) derived from eukaryote Saccharomyces cerevisiae [J]. Applied Biochemistry & Biotechnology, 2017, 183(4): 1390-1400. |
28 | KE C R, WEI J, REN Y, et al. Efficient gamma-aminobutyric acid bioconversion by engineered Escherichia coli [J]. Biotechnology & Biotechnological Equipment, 2018, 32(3): 566-573. |
29 | YU P, CHEN K F, HUANG X X, et al. Production of γ-aminobutyric acid in Escherichia coli by engineering MSG pathway[J]. Preparative Biochemistry & Biotechnology, 2018, 48(10): 906-913. |
30 | LE VO T D, KIM T W, HONG S H. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli [J]. Bioprocess and Biosystems Engineering, 2012, 35(4): 645-650. |
31 | YANG X W, KE C R, ZHU J M, et al. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3623-3633. |
32 | PHAM V D, LEE S H, PARK S J, et al. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli [J]. Journal of Biotechnology, 2015, 207: 52-57. |
33 | PHAM V D, SOMASUNDARAM S, LEE S H, et al. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(1): 79-86. |
34 | PHAM V D, SOMASUNDARAM S, LEE S H, et al. Redirection of metabolic flux into novel gamma-aminobutyric acid production pathway by introduction of synthetic scaffolds strategy in Escherichia coli [J]. Applied Biochemistry & Biotechnology, 2016, 178(7): 1315-1324. |
35 | PHAM V D, SOMASUNDARAM S, LEE S H, et al. Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes[J]. Biotechnology Letters, 2016, 38(2): 321-327. |
36 | PHAM V D, SOMASUNDARAM S, PARK S J, et al. Co-localization of GABA shunt enzymes for the efficient production of gamma-aminobutyric acid via GABA shunt pathway in Escherichia coli [J]. Journal of Microbiology and Biotechnology, 2016, 26(4): 710-716. |
37 | ZHAO A Q, HU X Q, WANG X Y. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3587-3603. |
38 | SOMA Y, FUJIWARA Y, NAKAGAWA T, et al. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose[J]. Metabolic Engineering, 2017, 43(Pt A): 54-63. |
39 | IM D K, HONG J, GU B, et al. 13C metabolic flux analysis of Escherichia coli engineered for gamma-aminobutyrate production[J]. Biotechnology Journal, 2020, 15(6): e1900346. |
40 | LAN Y J, TAN S I, CHENG S Y, et al. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system[J]. Biochemical Engineering Journal, 2021, 168: 107952. |
41 | TAKAHASHI C, SHIRAKAWA J, TSUCHIDATE T, et al. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli [J]. Enzyme and Microbial Technology, 2012, 51(3): 171-176. |
42 | SHI F, JIANG J J, LI Y F, et al. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis [J]. Journal of Industrial Microbiology & Biotechnology, 2013, 40(11): 1285-1296. |
43 | CHOI J W, YIM S S, LEE S H, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range[J]. Microbial Cell Factories, 2015, 14: 21. |
44 | BARITUGO K A, KIM H T, DAVID Y, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution[J]. Microbial Cell Factories, 2018, 17(1): 129. |
45 | SHI F, LUAN M Y, LI Y F. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum [J]. AMB Express, 2018, 8(1): 61. |
46 | ZHAO Z, DING J Y, MA W H, et al. Identification and characterization of γ-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum [J]. Applied and Environmental Microbiology, 2012, 78(8): 2596-2601. |
47 | OKAI N, TAKAHASHI C, HATADA K, et al. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase[J]. AMB Express, 2014, 4: 20. |
48 | WANG C, ZHANG K, CHEN Z J, et al. Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production[J]. Biotechnology & Bioprocess Engineering, 2015, 20(3): 439-446. |
49 | SHI F, ZHANG M, LI Y F. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum [J]. World Journal of Microbiology & Biotechnology, 2017, 33(6): 122. |
50 | JORGE J M P, LEGGEWIE C, WENDISCH V F. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose[J]. Amino Acids, 2016, 48(11): 2519-2531. |
51 | ZHANG R Z, YANG T W, RAO Z M, et al. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum [J]. Green Chem, 2014, 16(9): 4190-4197. |
52 | JORGE J M, NGUYEN A Q, PÉREZ-GARCÍA F, et al. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose[J]. Biotechnology and Bioengineering, 2017, 114(4): 862-873. |
53 | CHO J S, CHOI K R, PRABOWO C P S, et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum [J]. Metabolic Engineering, 2017, 42: 157-167. |
54 | ZHANG Y, ZHAO J, WANG X L, et al. Model-guided metabolic rewiring for gamma-aminobutyric acid and butyrolactam biosynthesis in Corynebacterium glutamicum ATCC13032[J]. Biology, 2022, 11(6): 846. |
55 | SON J, BARITUGO K A, SOHN Y J, et al. Production of γ-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expression of glutamate decarboxylase active at neutral pH[J]. ACS Omega, 2022, 7(33): 29106-29115. |
56 | LI H X, QIU T, HUANG G D, et al. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation[J]. Microbial Cell Factories, 2010, 9: 85. |
57 | WEI L, ZHAO J H, WANG Y R, et al. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control[J]. Metabolic Engineering, 2022, 69: 134-146. |
58 | JUN C H, JOO J C, LEE J H, et al. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain[J]. Journal of Biotechnology, 2014, 174: 22-28. |
59 | PENNACCHIETTI E, LAMMENS T M, CAPITANI G, et al. Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH[J]. Journal of Biological Chemistry, 2009, 284(46): 31587-31596. |
60 | SA H D, PARK J Y, JEONG S J, et al. Characterization of glutamate decarboxylase (GAD) from Lactobacillus sakei A156 isolated from Jeot-gal [J]. Journal of Microbiology and Biotechnology, 2015, 25(5): 696-703. |
61 | SHI F, XIE Y L, JIANG J J, et al. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH[J]. Enzyme and Microbial Technology, 2014, 61-62: 35-43. |
62 | SEO M J, NAM Y D, LEE S Y, et al. Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing γ-aminobutyric acid[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(4): 853-856. |
63 | YU K, LIN L, HU S, et al. C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH[J]. Enzyme and Microbial Technology, 2012, 50(4-5): 263-269. |
64 | YANG S Y, LIN Q, LU Z X, et al. Characterization of a novel glutamate decarboxylase from Streptococcus salivarius ssp. thermophilus Y2[J]. Journal of Chemical Technology & Biotechnology, 2008, 83(6): 855-861. |
65 | LIU Q D, CHENG H J, MA X Q, et al. Expression, characterization and mutagenesis of a novel glutamate decarboxylase from Bacillus megaterium [J]. Biotechnology Letters, 2016, 38(7): 1107-1113. |
66 | KIM H W, KASHIMA Y, ISHIKAWA K, et al. Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii [J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(1): 224-227. |
67 | HAO R, SCHMIT J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia[J]. Journal of Biological Chemistry, 1991, 266(8): 5135-5139. |
68 | CUI Y H, MIAO K, NIYAPHORN S, et al. Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review[J]. International Journal of Molecular Sciences, 2020, 21(3): 995. |
69 | LI H X, QIU T, GAO D D, et al. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912[J]. Amino Acids, 2010, 38(5): 1439-1445. |
70 | HARTLINE C J, SCHMITZ A C, HAN Y C, et al. Dynamic control in metabolic engineering: theories, tools, and applications[J]. Metabolic Engineering, 2021, 63: 126-140. |
71 | CHAE T U, KO Y S, HWANG K S, et al. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams[J]. Metabolic Engineering, 2017, 41: 82-91. |
72 | REVELLES O, WITTICH R M, RAMOS J L. Identification of the initial steps in D-lysine catabolism in Pseudomonas putida [J]. Journal of Bacteriology, 2007, 189(7): 2787-2792. |
73 | PARK S J, KIM E Y, NOH W, et al. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals[J]. Metabolic Engineering, 2013, 16: 42-47. |
74 | PARK S J, OH Y H, NOH W, et al. High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis[J]. Biotechnology Journal, 2014, 9(10): 1322-1328. |
75 | CHENG J, LUO Q, DUAN H C, et al. Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment[J]. Scientific Reports, 2020, 10(1): 990. |
76 | SHIN J H, PARK S H, OH Y H, et al. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid[J]. Microbial Cell Factories, 2016, 15(1): 174. |
77 | ROHLES C M, GIEßELMANN G, KOHLSTEDT M, et al. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate[J]. Microbial Cell Factories, 2016, 15(1): 154. |
78 | JOO J C, OH Y H, YU J H, et al. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process[J]. Bioresource Technology, 2017, 245: 1692-1700. |
79 | ROHLES C, PAULI S, GIEßELMANN G, et al. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate[J]. Metabolic Engineering, 2022, 73: 168-181. |
80 | 박시재, DAVID Y, BAYLON M G, et al. 바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발[J/OL]. 한국공업화학회, 2014, 25(2): 134-141[2023-03-01]. . |
PARK S J, DAVID Y, BAYLON M G, et al. Development of metabolic engineering strategies for microbial platform to produce bioplastics[J/OL]. Applied Chemistry for Engineering, 2014, 25(2): 134-141[2023-03-01]. . | |
81 | ADKINS J, JORDAN J, NIELSEN D R. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate[J]. Biotechnology and Bioengineering, 2013, 110(6): 1726-1734. |
82 | WANG X, CAI P P, CHEN K Q, et al. Efficient production of 5-aminovalerate from L-lysine by engineered Escherichia coli whole-cell biocatalysts[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 115-121. |
83 | LI Z, XU J, JIANG T T, et al. Overexpression of transport proteins improves the production of 5-aminovalerate from L-lysine in Escherichia coli [J]. Scientific Reports, 2016, 6: 30884. |
84 | CHENG J, ZHANG Y N, HUANG M H, et al. Enhanced 5-aminovalerate production in Escherichia coli from L-lysine with ethanol and hydrogen peroxide addition[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3492-3501. |
85 | CHENG J, TU W Y, LUO Z, et al. A high-efficiency artificial synthetic pathway for 5-aminovalerate production from biobased L-lysine in Escherichia coli [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 633028. |
86 | JORGE J M P, PÉREZ-GARCÍA F, WENDISCH V F. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources[J]. Bioresource Technology, 2017, 245: 1701-1709. |
87 | HAUPKA C, DELÉPINE B, IRLA M, et al. Flux enforcement for fermentative production of 5-aminovalerate and glutarate by Corynebacterium glutamicum [J]. Catalysts, 2020, 10(9): 1065. |
88 | HAN T, LEE S Y. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer[J]. Metabolic Engineering, 2023, 79: 78-85. |
89 | THOMPSON M G, VALENCIA L E, BLAKE-HEDGES J M, et al. Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer[J]. Metabolic Engineering Communications, 2019, 9: e00098. |
90 | 叶健文, 陈江楠, 张旭, 等. 动态调控: 一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
YE J W, CHEN J N, ZHANG X, et al. Dynamic control: an efficient strategy for metabolically engineering microbial cell factories[J]. Biotechnology Bulletin, 2020, 36(6): 1-12. | |
91 | ZHANG J W, BARAJAS J F, BURDU M, et al. Development of a transcription factor-based lactam biosensor[J]. ACS Synthetic Biology, 2017, 6(3): 439-445. |
92 | ZHAO X X, WU Y L, FENG T Y, et al. Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum [J]. Metabolic Engineering, 2023, 77: 89-99. |
93 | YEOM S J, KIM M, KWON K K, et al. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts[J]. Nature Communications, 2018, 9(1): 5053. |
94 | LEE S Y, KIM H U. Systems strategies for developing industrial microbial strains[J]. Nature Biotechnology, 2015, 33(10): 1061-1072. |
95 | ZENG W Z, GUO L K, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends in Biotechnology, 2020, 38(8): 888-906. |
96 | ZHOU H, VONK B, ROUBOS J A, et al. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor[J]. Nucleic Acids Research, 2015, 43(21): 10560-10570. |
97 | STAVILA E, LOOS K. Synthesis of lactams using enzyme-catalyzed aminolysis[J]. Tetrahedron Letters, 2013, 54(5): 370-372. |
98 | ZHANG Z H, WANG Y, ZHENG P, et al. Promoting lignin valorization by coping with toxic C1 byproducts[J]. Trends in Biotechnology, 2021, 39(4): 331-335. |
99 | XIN B, ZHONG C, WANG Y. Integrating the marine carbon resource mannitol into biomanufacturing[J]. Trends in Biotechnology, 2023, 41(6): 745-749. |
100 | WANG Y, FAN L W, TUYISHIME P, et al. Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing[J]. Trends in Biotechnology, 2020, 38(6): 650-666. |
[1] | 仲泉周, 单依怡, 裴清云, 金艳芸, 王艺涵, 孟璐远, 王歆韵, 张雨鑫, 刘坤媛, 王慧中, 冯尚国. 生物合成法生产α-熊果苷的研究进展[J]. 合成生物学, 2025, 6(1): 118-135. |
[2] | 柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, 2024, 5(6): 1242-1263. |
[3] | 竺方欢, 岑雪聪, 陈振. 微生物合成二元醇研究进展[J]. 合成生物学, 2024, 5(6): 1367-1385. |
[4] | 李庚, 申晓林, 孙新晓, 王佳, 袁其朋. 过氧化物酶的重组表达和应用研究进展[J]. 合成生物学, 2024, 5(6): 1498-1517. |
[5] | 郑皓天, 李朝风, 刘良叙, 王嘉伟, 李恒润, 倪俊. 负碳人工光合群落的设计、优化与应用[J]. 合成生物学, 2024, 5(5): 1189-1210. |
[6] | 程晓雷, 刘天罡, 陶慧. 萜类化合物的非常规生物合成研究进展[J]. 合成生物学, 2024, 5(5): 1050-1071. |
[7] | 刘子健, 穆柏杨, 段志强, 王璇, 陆晓杰. 与核酸兼容的化学反应开发进展[J]. 合成生物学, 2024, 5(5): 1102-1124. |
[8] | 张守祺, 王涛, 孔尧, 邹家胜, 刘元宁, 徐正仁. 天然产物的化学-酶法合成:方法与策略的演进[J]. 合成生物学, 2024, 5(5): 913-940. |
[9] | 谢向前, 郭雯, 王欢, 李进. 含氨基乙烯半胱氨酸核糖体肽的生物合成与化学合成[J]. 合成生物学, 2024, 5(5): 981-996. |
[10] | 汤志军, 胡友财, 刘文. 酶促4+2和2+2环加成反应:区域与立体选择性的理解与应用[J]. 合成生物学, 2024, 5(3): 401-407. |
[11] | 张俊, 金诗雪, 云倩, 瞿旭东. 聚酮化合物非天然延伸单元的生物合成与结构改造应用[J]. 合成生物学, 2024, 5(3): 561-570. |
[12] | 陈锡玮, 张华然, 邹懿. 真菌源非核糖体肽类药物生物合成及代谢工程[J]. 合成生物学, 2024, 5(3): 571-592. |
[13] | 冯金, 潘海学, 唐功利. 近十年天然产物药物的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 408-446. |
[14] | 奚萌宇, 胡逸灵, 顾玉诚, 戈惠明. 基因组挖掘指导天然药物分子的发现[J]. 合成生物学, 2024, 5(3): 447-473. |
[15] | 施鑫杰, 杜艺岭. 双嵌入家族抗肿瘤非核糖体肽的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 593-611. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||