合成生物学

• 特约评述 •    

双嵌入家族抗肿瘤非核糖体肽的生物合成研究进展

施鑫杰, 杜艺岭   

  1. 浙江大学基础医学院微生物系,药物生物技术研究所,浙江 杭州 310058
  • 收稿日期:2023-11-28 修回日期:2024-02-29 出版日期:2024-03-05
  • 通讯作者: 杜艺岭
  • 作者简介:施鑫杰(1996—),男,博士。研究方向为微生物天然产物生物合成。E-mail:xjshi@zju.edu.cn
    杜艺岭(1983—),男,研究员,博士生导师。研究方向为微生物次级代谢的生物化学机理、微生物药源分子的发现与生物合成、微生物合成生物学与化学生物学等。E-mail:yldu@zju.edu.cn
  • 基金资助:
    国家自然科学基金(32122005)

Recent advances in the biosynthesis of bisintercalator family of anticancer nonribosomal peptides

Xinjie SHI, Yiling DU   

  1. Institute of Pharmaceutical Biotechnology,Department of Microbiology,Zhejiang University School of Medicine,Hangzhou 310058,Zhejiang,China
  • Received:2023-11-28 Revised:2024-02-29 Online:2024-03-05
  • Contact: Yiling DU

摘要:

双嵌入家族(Bisintercalator)非核糖体肽是一类由放线菌产生的C2中心对称的环状肽类化合物,能够通过其结构中两个独特的发色基团插入到DNA分子中,因此具有良好的抗菌和抗肿瘤等生物活性。这些家族化合物的结构多样性主要源于芳香杂环、氨基酸种类和数量以及修饰基团的不同。这些结构差异不仅导致其抗菌和抗肿瘤活性的强度和选择性的不同,还赋予了它们抗真菌、抗疟、抗病毒等其他活性。本文总结了双嵌入家族非核糖体肽的结构与活性和生物合成途径,展望了其未来发展方向以及面对的挑战。双嵌入家族非核糖体肽的分子结构复杂,化学合成非常具有挑战性,微生物发酵是生产此家族化合物的主要方法。近年来,双嵌入非核糖体肽类家族的生物合成途径得到了较为系统的研究,该家族主要代表性分子的肽链骨架组装、起始单元的生物合成以及后修饰过程已被基本阐明。这些研究成果不仅揭示了一系列微生物次生代谢中新颖的生物合成酶家族和酶催化机理,也为通过合成生物学技术对该家族分子进行分子结构创新提供了高贵的生物催化组件。这些生物合成的理论知识将进一步推动这一具有前景的天然产物家族的精准发现与后续的药物开发研究。

关键词: 非核糖体肽, 双嵌入家族, 天然产物, 抗肿瘤化合物, 生物合成

Abstract:

Bisintercalator family of natural products are a group of C2-symmetric cyclic non-ribosomal peptides produced by actinobacteria, possessing potent antimicrobial, antitumor and other bioactivities. Bisintercalators can be divided into two groups based on the size of their macrocycles. Those that are constituted of eight amino acid residues are defined as the minor scaffold type, while those with ten residues belong to the major scaffold type. Structure diversity among bisintercalators arises from variations in aromatic heterocycles, amino acids identities and quantities, and post-assembly line modifications. The major scaffold type harbors two structurally rigid six-membered nitrogen heterocycle-containing amino acids, which can further undergo oxidative and acylation tailorings. The minor scaffold type seemingly derives their rigidity from disulfide or thioacetal bridges formed by sulfydryls of two cysteines. Thioacetal bridges allow variable S-alkyl elongation and conversion of S-alkyl sulfur into sulfoxide moiety. Besides, bisintercalators exhibit differences in other amino acid identities, which contribute to their diverse activities, including antimicrobial, antitumor, antifungal, anti-malarial, or antiviral effects. Chemical synthesis of these nonribosomal peptides is complex due to their intricate architecture, making microbial fermentation a more efficient scalable production method. Structural optimization is achievable through combinatorial and precursor-guided biosynthesis. Understanding the biosynthetic pathways of bisintercalators is crucial for yield enhancement via pathway-specific regulation and offers biocatalytic parts for structural innovations. All these necessitate delineation of the biosynthetic pathway of bisintercalators, which paves the way for yield promotion through pathway-specific regulator manipulation and provides basic genetic elements for structural renovation. Deciphering biosynthesis pathways of these compounds has uncovered the biochemical basis for peptide chain assembly, aromatic heterocycle formation, and post-NRPS tailoring. Corresponding to their structural similarity, their biosynthesis involves several shared enzyme machineries. Different types of the key aromatic bicyclic heterocycles are all derived from L-tryptophan, and used as starting unites in respective NRPS assembly lines. Diversified post-NRPS tailoring finally gives bisintercalators. This knowledge will facilitate future discovery and drug development for this promising natural product family.

Key words: nonribosomal peptide, bisintercalator family, natural product, antitumor agent, biosynthesis

中图分类号: