合成生物学 ›› 2024, Vol. 5 ›› Issue (3): 571-592.DOI: 10.12211/2096-8280.2023-080
陈锡玮, 张华然, 邹懿
收稿日期:
2023-11-20
修回日期:
2024-01-05
出版日期:
2024-06-30
发布日期:
2024-07-12
通讯作者:
邹懿
作者简介:
基金资助:
Xiwei CHEN, Huaran ZHANG, Yi ZOU
Received:
2023-11-20
Revised:
2024-01-05
Online:
2024-06-30
Published:
2024-07-12
Contact:
Yi ZOU
摘要:
真菌源非核糖体肽类(NRP)药物因其活性优异、结构多样而备受关注。至今美国食品药品监督管理局(FDA)已批准了数十种真菌NRP药物,包括环孢菌素、头孢菌素和棘白菌素等重磅药物。这些NRP药物均由非核糖体肽合成酶(NRPS)催化形成,其多样化的结构域和模块数量决定了产物骨架的多样性,从而为天然源活性NRP的开发提供了广阔的空间。此外,骨架结构上的特殊后修饰过程往往为NRP药物提供了强效的药效基团,进一步扩充了NRP结构与活性的多样性。本文综述了真菌NRP药物的研究进展,主要涵盖药物活性、生物合成途径、酶学机理和代谢工程改造等。深入了解真菌NRP药物生物合成途径不仅有助于理解相关的酶学组装机制,还有望为新型真菌NRP药物及其衍生物的深度开发提供重要的指导和参考。
中图分类号:
陈锡玮, 张华然, 邹懿. 真菌源非核糖体肽类药物生物合成及代谢工程[J]. 合成生物学, 2024, 5(3): 571-592.
Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides[J]. Synthetic Biology Journal, 2024, 5(3): 571-592.
36 | BALKOVEC J M, HUGHES D L, MASUREKAR P S, et al. Discovery and development of first in class antifungal caspofungin (CANCIDAS®)—a case study[J]. Natural Product Reports, 2014, 31(1): 15-34. |
37 | DEBONO M, TURNER W W, LAGRANDEUR L, et al. Semisynthetic chemical modification of the antifungal lipopeptide echinocandin B (ECB): structure-activity studies of the lipophilic and geometric parameters of polyarylated acyl analogs of ECB[J]. Journal of Medicinal Chemistry, 1995, 38(17): 3271-3281. |
38 | BOUFFARD F A, ZAMBIAS R A, DROPINSKI J F, et al. Synthesis and antifungal activity of novel cationic pneumocandin Bo derivatives[J]. Journal of Medicinal Chemistry, 1994, 37(2): 222-225. |
39 | TOMISHIMA M, OHKI H, YAMADA A, et al. FK463, a novel water-soluble echinocandin lipopeptide: synthesis and antifungal activity[J]. The Journal of Antibiotics, 1999, 52(7): 674-676. |
40 | SYED Y Y. Rezafungin: first approval[J]. Drugs, 2023, 83(9): 833-840. |
41 | BUSHLEY K E, RAJA R, JAISWAL P, et al. The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster[J]. PLoS Genetics, 2013, 9(6): e1003496. |
42 | BOREL J F, FEURER C, GUBLER H U, et al. Biological effects of cyclosporin A: a new antilymphocytic agent[J]. Agents and Actions, 1994, 43(3/4): 179-186. |
43 | FISCHER G, WITTMANN-LIEBOLD B, LANG K, et al. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins[J]. Nature, 1989, 337(6206): 476-478. |
44 | SURVASE S A, KAGLIWAL L D, ANNAPURE U S, et al. Cyclosporin A—a review on fermentative production, downstream processing and pharmacological applications[J]. Biotechnology Advances, 2011, 29(4): 418-435. |
45 | ABDEL-KAHAAR E, KELLER F. Clinical pharmacokinetics and pharmacodynamics of voclosporin[J]. Clinical Pharmacokinetics, 2023, 62(5): 693-703. |
46 | GÄUMANN E, ROTH S, ETTLINGER L, et al. Enniatin, ein neues, gegen Mykobakterien wirksames Antibiotikum[J]. Experientia, 1947, 3(5): 202-203. |
47 | SUPOTHINA S, ISAKA M, KIRTIKARA K, et al. Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449[J]. The Journal of Antibiotics, 2004, 57(11): 732-738. |
48 | LIN Y, WANG J, WU X, et al. A novel compound enniatin G from the mangrove fungus Halosarpheia sp. (strain #732) from the South China Sea[J]. Australian Journal of Chemistry, 2002, 55(3): 225-227. |
49 | SY-CORDERO A A, PEARCE C J, OBERLIES N H. Revisiting the enniatins: a review of their isolation, biosynthesis, structure determination and biological activities[J]. The Journal of Antibiotics, 2012, 65(11): 541-549. |
50 | PROSPERINI A, BERRADA H, RUIZ M J, et al. A review of the mycotoxin enniatin B[J]. Frontiers in Public Health, 2017, 5: 304. |
51 | GERMAN-FATTAL M. Fusafungine, an antimicrobial with anti-inflammatory properties in respiratory tract infections[J]. Clinical Drug Investigation, 2001, 21(9): 653-670. |
52 | HAMILL R L, HIGGENS C E, BOAZ H E, et al. The structure op beauvericin, a new depsipeptide antibiotic toxic to Artemia salina [J]. Tetrahedron Letters, 1969, 10(49): 4255-4258. |
53 | KŘÍŽOVÁ L, DADÁKOVÁ K, DVOŘÁČKOVÁ M, et al. Feedborne mycotoxins beauvericin and enniatins and livestock animals[J]. Toxins, 2021, 13(1): 32. |
54 | URBANIAK M, WAŚKIEWICZ A, STĘPIEŃ Ł. Fusarium cyclodepsipeptide mycotoxins: chemistry, biosynthesis, and occurrence[J]. Toxins, 2020, 12(12): 765. |
55 | HULVOVÁ H, GALUSZKA P, FRÉBORTOVÁ J, et al. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids[J]. Biotechnology Advances, 2013, 31(1): 79-89. |
56 | GAO Q, JIN K, YING S H, et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum [J]. PLoS Genetics, 2011, 7(1): e1001264. |
57 | KOZLOVSKIĬ A G, ZHELIFONOVA V P, ANTIPOVA T V, et al. Physiological and biochemical characteristics of fungi of the genus Penicillium as producers of ergot alkaloids and quinocitrinins[J]. Prikladnaia Biokhimiia i Mikrobiologiia, 2011, 47(4): 469-473. |
58 | GE H M, YU Z G, ZHANG J, et al. Bioactive alkaloids from endophytic Aspergillus fumigatus [J]. Journal of Natural Products, 2009, 72(4): 753-755. |
59 | SCHARDL C L, PANACCIONE D G, TUDZYNSKI P. Ergot alkaloids-biology and molecular biology[J]. The Alkaloids Chemistry and Biology, 2006, 63: 45-86. |
60 | WALSH C T, O’BRIEN R V, KHOSLA C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds[J]. Angewandte Chemie International Edition, 2013, 52(28): 7098-7124. |
61 | CONDURSO H L, BRUNER S D. Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery[J]. Natural Product Reports, 2012, 29(10): 1099-1110. |
1 | SCHUEFFLER A, ANKE T. Fungal natural products in research and development[J]. Natural Product Reports, 2014, 31(10): 1425-1448. |
2 | EVIDENTE A, KORNIENKO A, CIMMINO A, et al. Fungal metabolites with anticancer activity[J]. Natural Product Reports, 2014, 31(5): 617-627. |
3 | SÜSSMUTH R D, MAINZ A. Nonribosomal peptide synthesis-principles and prospects[J]. Angewandte Chemie International Edition, 2017, 56(14): 3770-3821. |
4 | ANGELINI A, CENDRON L, CHEN S Y, et al. Bicyclic peptide inhibitor reveals large contact interface with a protease target[J]. ACS Chemical Biology, 2012, 7(5): 817-821. |
5 | SOHRABI C, FOSTER A, TAVASSOLI A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery[J]. Nature Reviews Chemistry, 2020, 4(2): 90-101. |
6 | BRIAN CHIA C S. A review on the metabolism of 25 peptide drugs[J]. International Journal of Peptide Research and Therapeutics, 2021, 27(2): 1397-1418. |
7 | LIU Y, DING S Y, SHEN J Z, et al. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria[J]. Natural Product Reports, 2019, 36(4): 573-592. |
8 | ZORZI A, DEYLE K, HEINIS C. Cyclic peptide therapeutics: past, present and future[J]. Current Opinion in Chemical Biology, 2017, 38: 24-29. |
9 | ONGPIPATTANAKUL C, DESORMEAUX E K, DICAPRIO A, et al. Mechanism of action of ribosomally synthesized and post-translationally modified peptides[J]. Chemical Reviews, 2022, 122(18): 14722-14814. |
10 | VASSAUX A, MEUNIER L, VANDENBOL M, et al. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production[J]. Biotechnology Advances, 2019, 37(8): 107449. |
11 | EHINGER F J, NIEHS S P, DOSE B, et al. Analysis of rhizonin biosynthesis reveals origin of pharmacophoric furylalanine moieties in diverse cyclopeptides[J]. Angewandte Chemie International Edition, 2023, 62(42): e202308540. |
12 | THEOBALD S, VESTH T C, ANDERSEN M R. Genus level analysis of PKS-NRPS and NRPS-PKS hybrids reveals their origin in Aspergilli[J]. BMC Genomics, 2019, 20(1): 847. |
62 | HUR G H, VICKERY C R, BURKART M D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology[J]. Natural Product Reports, 2012, 29(10): 1074-1098. |
63 | DEKIMPE S, MASSCHELEIN J. Beyond peptide bond formation: the versatile role of condensation domains in natural product biosynthesis[J]. Natural Product Reports, 2021, 38(10): 1910-1937. |
64 | ZHANG J J, TANG X Y, HUAN T, et al. Pass-back chain extension expands multimodular assembly line biosynthesis[J]. Nature Chemical Biology, 2020, 16(1): 42-49. |
65 | RABE P, KAMPS J J A G, SCHOFIELD C J, et al. Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in β-lactam biosynthesis[J]. Natural Product Reports, 2018, 35(8): 735-756. |
66 | THEILGAARD H B, KRISTIANSEN K N, HENRIKSEN C M, et al. Purification and characterization of δ-(L-α-aminoadipyl)- L-cysteinyl-D-valine synthetase from Penicillium chrysogenum [J]. The Biochemical Journal, 1997, 327(Pt 1): 185-191. |
67 | VAN DER LENDE T R, VAN DE KAMP M, BERG M, et al. δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme[J]. Fungal Genetics and Biology, 2002, 37(1): 49-55. |
68 | ZABRISKIE T M, JACKSON M D. Lysine biosynthesis and metabolism in fungi[J]. Natural Product Reports, 2000, 17(1): 85-97. |
69 | XU H Y, ANDI B, QIAN J H, et al. The α-aminoadipate pathway for lysine biosynthesis in fungi[J]. Cell Biochemistry and Biophysics, 2006, 46(1): 43-64. |
70 | TAMANAHA E, ZHANG B, GUO Y S, et al. Spectroscopic evidence for the two C-H-cleaving intermediates of Aspergillus nidulans isopenicillin N synthase[J]. Journal of the American Chemical Society, 2016, 138(28): 8862-8874. |
71 | ROACH P L, CLIFTON I J, FÜLÖP V, et al. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes[J]. Nature, 1995, 375(6533): 700-704. |
72 | ROACH P L, CLIFTON I J, HENSGENS C M, et al. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation[J]. Nature, 1997, 387(6635): 827-830. |
73 | BALDWIN J E, BRADLEY M. Isopenicillin N synthase: mechanistic studies[J]. Chemical Reviews, 1990, 90(7): 1079-1088. |
13 | KHALDI N, COLLEMARE J, LEBRUN M H, et al. Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi[J]. Genome Biology, 2008, 9(1): R18. |
14 | ZHANG H Y, CHEN S Y. Cyclic peptide drugs approved in the last two decades (2001-2021)[J]. RSC Chemical Biology, 2022, 3(1): 18-31. |
15 | CHEN X W, RAO L, CHEN J L, et al. Unexpected assembly machinery for 4(3H)-quinazolinone scaffold synthesis[J]. Nature Communications, 2022, 13(1): 6522. |
16 | RAO L, SHI H C, ZOU Y. A fungal nonribosomal peptide-polyketide hybrid synthase synthesizes 2-pyrrolidinone alkaloid[J]. Tetrahedron, 2022, 125: 133060. |
17 | ZHANG H R, ZHANG C Y, LI Q L, et al. Metabolic blockade-based genome mining reveals lipochain-linked dihydro-β- alanine synthetases involved in autucedine biosynthesis[J]. Organic Letters, 2022, 24(30): 5535-5540. |
18 | BAHADOOR A, BRAUER E K, BOSNICH W, et al. Gramillin A and B: cyclic lipopeptides identified as the nonribosomal biosynthetic products of Fusarium graminearum [J]. Journal of the American Chemical Society, 2018, 140(48): 16783-16791. |
19 | LI C S, HU Y F, WU X H, et al. Discovery of unusual dimeric piperazyl cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(17): e2117941119. |
20 | BERGMANN S, SCHÜMANN J, SCHERLACH K, et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans [J]. Nature Chemical Biology, 2007, 3(4): 213-217. |
21 | MA J Y, HUANG H B, XIE Y C, et al. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents[J]. Nature Communications, 2017, 8(1): 391. |
22 | WU Y Q, WANG M, LIU L W. Advances on structure, bioactivity, and biosynthesis of amino acid-containing trans-AT polyketides[J]. European Journal of Medicinal Chemistry, 2023, 262: 115890. |
23 | FISCHBACH M A, WALSH C T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms[J]. Chemical Reviews, 2006, 106(8): 3468-3496. |
24 | USMANI S S, BEDI G, SAMUEL J S, et al. THPdb: database of FDA-approved peptide and protein therapeutics[J]. PLoS One, 2017, 12(7): e0181748. |
25 | HAMED R B, GOMEZ-CASTELLANOS J R, HENRY L, et al. The enzymes of β-lactam biosynthesis[J]. Natural Product Reports, 2013, 30(1): 21-107. |
74 | WHITEMAN P A, ABRAHAM E P, BALDWIN J E, et al. Acyl coenzyme A: 6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans [J]. FEBS Letters, 1990, 262(2): 342-344. |
75 | MARTÍN J F, ULLÁN R V, GARCÍA-ESTRADA C. Regulation and compartmentalization of β-lactam biosynthesis[J]. Microbial Biotechnology, 2010, 3(3): 285-299. |
76 | KIEL J A, VAN DEN BERG M A, FUSETTI F, et al. Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells[J]. Functional & Integrative Genomics, 2009, 9(2): 167-184. |
77 | SHEN Y Q, WOLFE S, DEMAIN A L. Enzymatic conversion of the unnatural tripeptide delta-(D-alpha-aminoadipyl)-L-cysteinyl-D-valine to β-lactam antibiotics[J]. The Journal of Antibiotics, 1984, 37(9): 1044-1048. |
78 | ULLAN R V, CASQUEIRO J, BANUELOS O, et al. A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum [J]. The Journal of Biological Chemistry, 2002, 277(48): 46216-46225. |
79 | KNIHINICKI R D, DAY R O, WILLIAMS K M. Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs—Ⅱ racemization and hydrolysis of (R)- and (S)-ibuprofen-CoA thioesters[J]. Biochemical Pharmacology, 1991, 42(10): 1905-1911. |
80 | ULLÁN R V, CASQUEIRO J, NARANJO L, et al. Expression of cefD2 and the conversion of isopenicillin N into penicillin N by the two-component epimerase system are rate-limiting steps in cephalosporin biosynthesis[J]. Molecular Genetics and Genomics, 2004, 272(5): 562-570. |
81 | SAMSON S M, DOTZLAF J E, SLISZ M L, et al. Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis[J]. Nature Biotechnology, 1987, 5(11): 1207-1214. |
82 | BARENDS T R M, YOSHIDA H, DIJKSTRA B W. Three-dimensional structures of enzymes useful for β-lactam antibiotic production[J]. Current Opinion in Biotechnology, 2004, 15(4): 356-363. |
83 | LEJON S, ELLIS J, VALEGÅRD K. The last step in cephalosporin C formation revealed: crystal structures of deacetylcephalosporin C acetyltransferase from Acremonium chrysogenum in complexes with reaction intermediates[J]. Journal of Molecular Biology, 2008, 377(3): 935-944. |
84 | GUTIÉRREZ S, VELASCO J, FERNANDEZ F J, et al. The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase[J]. Journal of Bacteriology, 1992, 174(9): 3056-3064. |
85 | CACHO R A, JIANG W, CHOOI Y H, et al. Identification and characterization of the echinocandin B biosynthetic gene cluster from Emericella rugulosa NRRL 11440[J]. Journal of the American Chemical Society, 2012, 134(40): 16781-16790. |
86 | CHEN L, YUE Q, ZHANG X Y, et al. Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis [J]. BMC Genomics, 2013, 14: 339. |
26 | ELANDER R P. Industrial production of β-lactam antibiotics[J]. Applied Microbiology and Biotechnology, 2003, 61(5): 385-392. |
27 | WAXMAN D J, STROMINGER J L. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics[J]. Annual Review of Biochemistry, 1983, 52: 825-869. |
28 | LIU L, CHEN Z, LIU W Y, et al. Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum [J]. Applied Microbiology and Biotechnology, 2022, 106(19/20): 6413-6426. |
29 | LEVENTOGIANNIS K, MOUKTAROUDI M, GIAMARELLOS-BOURBOULIS E J. Clinical evidence supporting ceftaroline fosamil and ceftobiprole for complicated skin and soft tissue infections[J]. Current Opinion in Infectious Diseases, 2023, 36(2): 89-94. |
30 | DRAWZ S M, BABIC M, BETHEL C R, et al. Inhibition of the class C β-lactamase from Acinetobacter spp.: insights into effective inhibitor design[J]. Biochemistry, 2010, 49(2): 329-340. |
31 | MURAKAMI K, TAKASUKA M, MOTOKAWA K, et al. 1-oxacephalosporins: enhancement of β-lactam reactivity and antibacterial activity[J]. Journal of Medicinal Chemistry, 1981, 24(1): 88-93. |
32 | SYKES R B, BONNER D P. Aztreonam: the first monobactam[J]. The American Journal of Medicine, 1985, 78(2A): 2-10. |
33 | ZHAO C R, YOU Z L, CHEN D D, et al. Structure of a fungal 1,3-β-glucan synthase[J]. Science Advances, 2023, 9(37): eadh7820. |
34 | HÜTTEL W. Echinocandins: structural diversity, biosynthesis, and development of antimycotics[J]. Applied Microbiology and Biotechnology, 2021, 105(1): 55-66. |
35 | ZAMBIAS R A, HAMMOND M L, HECK J V, et al. Preparation and structure-activity relationships of simplified analogs of the antifungal agent cilofungin: a total synthesis approach[J]. Journal of Medicinal Chemistry, 1992, 35(15): 2843-2855. |
87 | WEI T Y, ZHENG Y, WAN M Y, et al. Analysis of FR901379 biosynthetic genes in Coleophoma empetri by clustered regularly interspaced short palindromic repeats/Cas9-based genomic manipulation[J]. ACS Chemical Biology, 2022, 17(8): 2130-2141. |
88 | MATTAY J, HOUWAART S, HÜTTEL W. Cryptic production of trans-3-hydroxyproline in echinocandin B biosynthesis[J]. Applied and Environmental Microbiology, 2018, 84(7): e02370-17. |
89 | JIANG W, CACHO R A, CHIOU G, et al. EcdGHK are three tailoring iron oxygenases for amino acid building blocks of the echinocandin scaffold[J]. Journal of the American Chemical Society, 2013, 135(11): 4457-4466. |
90 | MEN P, GENG C, ZHANG X, et al. Biosynthesis mechanism, genome mining and artificial construction of echinocandin O-sulfonation[J]. Metabolic Engineering, 2022, 74: 160-167. |
91 | IWAMOTO T, FUJIE A, NITTA K, et al. WF11899A, B and C, novel antifungal lipopeptides. Ⅱ. Biological properties[J]. The Journal of Antibiotics, 1994, 47(10): 1092-1097. |
92 | DI SALVO M L D, FLORIO R, PAIARDINI A, et al. Alanine racemase from Tolypocladium inflatum: a key PLP-dependent enzyme in cyclosporin biosynthesis and a model of catalytic promiscuity[J]. Archives of Biochemistry and Biophysics, 2013, 529(2): 55-65. |
93 | YANG X Q, FENG P, YIN Y, et al. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment[J]. mBio, 2018, 9(5): e01211-18. |
94 | WEBER G, LEITNER E. Disruption of the cyclosporin synthetase gene of Tolypocladium niveum [J]. Current Genetics, 1994, 26(5-6): 461-467. |
95 | LAWEN A, ZOCHER R. Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described[J]. The Journal of Biological Chemistry, 1990, 265(19): 11355-11360. |
96 | ZHANG T, JIA X P, ZHUO Y, et al. Cloning and characterization of a novel 2-ketoisovalerate reductase from the beauvericin producer Fusarium proliferatum LF061[J]. BMC Biotechnology, 2012, 12: 55. |
97 | ZOCHER R, KELLER U, KLEINKAUF H. Enniatin synthetase, a novel type of multifunctional enzyme catalyzing depsipeptide synthesis in Fusarium oxysporum [J]. Biochemistry, 1982, 21(1): 43-48. |
98 | XU Y Q, OROZCO R, KITHSIRI WIJERATNE E M, et al. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana [J]. Chemistry & Biology, 2008, 15(9): 898-907. |
99 | HAARMANN T, MACHADO C, LÜBBE Y, et al. The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution[J]. Phytochemistry, 2005, 66(11): 1312-1320. |
100 | CHEN J J, HAN M Y, GONG T, et al. Recent progress in ergot alkaloid research[J]. RSC Advances, 2017, 7(44): 27384-27396. |
101 | GEBLER J C, POULTER C D. Purification and characterization of dimethylallyl tryptophan synthase from Claviceps purpurea [J]. Archives of Biochemistry and Biophysics, 1992, 296(1): 308-313. |
102 | RIGBERS O, LI S M. Ergot alkaloid biosynthesis in Aspergillus fumigatus. Overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase[J]. The Journal of Biological Chemistry, 2008, 283(40): 26859-26868. |
103 | GOETZ K E, COYLE C M, CHENG J Z, et al. Ergot cluster-encoded catalase is required for synthesis of chanoclavine-Ⅰ in Aspergillus fumigatus [J]. Current Genetics, 2011, 57(3): 201-211. |
104 | LORENZ N, OLSOVSKÁ J, SULC M, et al. Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I[J]. Applied and Environmental Microbiology, 2010, 76(6): 1822-1830. |
105 | WALLWEY C, MATUSCHEK M, LI S M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-Ⅰ to chanoclavine-Ⅰ aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH[J]. Archives of Microbiology, 2010, 192(2): 127-134. |
106 | NIERMAN W C, PAIN A, ANDERSON M J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus [J]. Nature, 2005, 438(7071): 1151-1156. |
107 | CHENG J Z, COYLE C M, PANACCIONE D G, et al. Controlling a structural branch point in ergot alkaloid biosynthesis[J]. Journal of the American Chemical Society, 2010, 132(37): 12835-12837. |
108 | HAARMANN T, ORTEL I, TUDZYNSKI P, et al. Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways[J]. ChemBioChem, 2006, 7(4): 645-652. |
109 | ORTEL I, KELLER U. Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea [J]. The Journal of Biological Chemistry, 2009, 284(11): 6650-6660. |
110 | CORREIA T, GRAMMEL N, ORTEL I, et al. Molecular cloning and analysis of the ergopeptine assembly system in the ergot fungus Claviceps purpurea [J]. Chemistry & Biology, 2003, 10(12): 1281-1292. |
111 | HAARMANN T, LORENZ N, TUDZYNSKI P. Use of a nonhomologous end joining deficient strain (Δku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis[J]. Fungal Genetics and Biology, 2008, 45(1): 35-44. |
112 | HAVEMANN J, VOGEL D, LOLL B, et al. Cyclolization of D-lysergic acid alkaloid peptides[J]. Chemistry & Biology, 2014, 21(1): 146-155. |
113 | ZHANG L W, WANG C, CHEN K, et al. Engineering the biosynthesis of fungal nonribosomal peptides[J]. Natural Product Reports, 2023, 40(1): 62-88. |
114 | MAO X M, XU W, LI D H, et al. Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products[J]. Angewandte Chemie International Edition, 2015, 54(26): 7592-7596. |
115 | SUN W W, GUO C J, WANG C C C. Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus [J]. Fungal Genetics and Biology, 2016, 89: 84-88. |
116 | RICHTER L, WANKA F, BOECKER S, et al. Engineering of Aspergillus niger for the production of secondary metabolites[J]. Fungal Biology and Biotechnology, 2014, 1: 4. |
117 | TRABER R, HOFMANN H, KOBEL H. Cyclosporins: new analogues by precursor directed biosynthesis[J]. The Journal of Antibiotics, 1989, 42(4): 591-597. |
118 | NILANONTA C, ISAKA M, CHANPHEN R, et al. Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: isolation and studies on precursor-directed biosynthesis[J]. Tetrahedron, 2003, 59(7): 1015-1020. |
119 | XU Y Q, ZHAN J X, KITHSIRI WIJERATNE E M, et al. Cytotoxic and antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159[J]. Journal of Natural Products, 2007, 70(9): 1467-1471. |
120 | SÜSSMUTH R, MÜLLER J, VON DÖHREN H, et al. Fungal cyclooligomer depsipeptides: from classical biochemistry to combinatorial biosynthesis[J]. Natural Product Reports, 2011, 28(1): 99-124. |
121 | XU Y Q, KITHSIRI WIJERATNE E M, ESPINOSA-ARTILES P, et al. Combinatorial mutasynthesis of scrambled beauvericins, cyclooligomer depsipeptide cell migration inhibitors from Beauveria bassiana [J]. ChemBioChem, 2009, 10(2): 345-354. |
122 | CHEN L, LI Y, YUE Q, et al. Engineering of new pneumocandin side-chain analogues from Glarea lozoyensis by mutasynthesis and evaluation of their antifungal activity[J]. ACS Chemical Biology, 2016, 11(10): 2724-2733. |
123 | YANAI K, SUMIDA N, OKAKURA K, et al. Para-position derivatives of fungal anthelmintic cyclodepsipeptides engineered with Streptomyces venezuelae antibiotic biosynthetic genes[J]. Nature Biotechnology, 2004, 22(7): 848-855. |
124 | KRIES H, WACHTEL R, PABST A, et al. Reprogramming nonribosomal peptide synthetases for “clickable” amino acids[J]. Angewandte Chemie International Edition, 2014, 53(38): 10105-10108. |
125 | THIRLWAY J, LEWIS R, NUNNS L, et al. Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity[J]. Angewandte Chemie International Edition, 2012, 51(29): 7181-7184. |
126 | BOZHÜYÜK K A J, LINCK A, TIETZE A, et al. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains[J]. Nature Chemistry, 2019, 11(7): 653-661. |
127 | ZOBEL S, BOECKER S, KULKE D, et al. Reprogramming the biosynthesis of cyclodepsipeptide synthetases to obtain new enniatins and beauvericins[J]. ChemBioChem, 2016, 17(4): 283-287. |
128 | STEINIGER C, HOFFMANN S, SÜSSMUTH R D. Probing exchange units for combining iterative and linear fungal nonribosomal peptide synthetases[J]. Cell Chemical Biology, 2019, 26(11): 1526-1534.e2. |
129 | MATTHES D, RICHTER L, MÜLLER J, et al. In vitro chemoenzymatic and in vivo biocatalytic syntheses of new beauvericin analogues[J]. Chemical Communications, 2012, 48(45): 5674-5676. |
130 | KOHLI R M, WALSH C T, BURKART M D. Biomimetic synthesis and optimization of cyclic peptide antibiotics[J]. Nature, 2002, 418(6898): 658-661. |
131 | QIAO K J, ZHOU H, XU W, et al. A fungal nonribosomal peptide synthetase module that can synthesize thiopyrazines[J]. Organic Letters, 2011, 13(7): 1758-1761. |
132 | DING Y S, RATH C M, BOLDUC K L, et al. Chemoenzymatic synthesis of cryptophycin anticancer agents by an ester bond-forming non-ribosomal peptide synthetase module[J]. Journal of the American Chemical Society, 2011, 133(37): 14492-14495. |
133 | HAI Y, JENNER M, TANG Y. Complete stereoinversion of L-tryptophan by a fungal single-module nonribosomal peptide synthetase[J]. Journal of the American Chemical Society, 2019, 141(41): 16222-16226. |
134 | ATANASOV A G, ZOTCHEV S B, DIRSCH V M, et al. Natural products in drug discovery: advances and opportunities[J]. Nature Reviews Drug Discovery, 2021, 20(3): 200-216. |
[1] | 汤志军, 胡友财, 刘文. 酶促4+2和2+2环加成反应:区域与立体选择性的理解与应用[J]. 合成生物学, 2024, 5(3): 401-407. |
[2] | 张俊, 金诗雪, 云倩, 瞿旭东. 聚酮化合物非天然延伸单元的生物合成与结构改造应用[J]. 合成生物学, 2024, 5(3): 561-570. |
[3] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[4] | 冯金, 潘海学, 唐功利. 近十年天然产物药物的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 408-446. |
[5] | 奚萌宇, 胡逸灵, 顾玉诚, 戈惠明. 基因组挖掘指导天然药物分子的发现[J]. 合成生物学, 2024, 5(3): 447-473. |
[6] | 施鑫杰, 杜艺岭. 双嵌入家族抗肿瘤非核糖体肽的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 593-611. |
[7] | 宋永相, 张秀凤, 李艳芹, 肖华, 闫岩. 自抗性基因导向的活性天然产物挖掘[J]. 合成生物学, 2024, 5(3): 474-491. |
[8] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 周强, 周大伟, 孙敬翔, 王靖楠, 姜万奎, 章文明, 蒋羽佳, 信丰学, 姜岷. 微生物发酵法合成虾青素的研究进展[J]. 合成生物学, 2024, 5(1): 126-143. |
[11] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[12] | 晏雄鹰, 王振, 娄吉芸, 张皓瑜, 黄星宇, 王霞, 杨世辉. 生物燃料高效生产微生物细胞工厂构建研究进展[J]. 合成生物学, 2023, 4(6): 1082-1121. |
[13] | 张凡忠, 相长君, 张骊駻. 进化与大数据导向生物信息学在天然产物研究中的发展及应用[J]. 合成生物学, 2023, 4(4): 629-650. |
[14] | 程真真, 张健, 高聪, 刘立明, 陈修来. 代谢工程改造微生物利用甲酸研究进展[J]. 合成生物学, 2023, 4(4): 756-778. |
[15] | 曾涛, 巫瑞波. 数据驱动的酶反应预测与设计[J]. 合成生物学, 2023, 4(3): 535-550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||