合成生物学

• 综述 •    

基因工程辅助萝卜硫苷在十字花科作物中的高效生物合成

刘晓悦, 王盼娣, 吴刚, 刘芳   

  1. 中国农业科学院油料作物研究所,农业农村部油料作物生物学与遗传育种重点实验室,农业农村部植物生态环境安全监督检验测试中心,湖北 武汉 430062
  • 出版日期:2024-08-20
  • 通讯作者: 吴刚,刘芳
  • 作者简介:刘晓悦(2000—),女,硕士研究生,研究方向为植物分子生物学与基因工程。 E-mail:17860395910@139.com
    吴刚(1976-),男,研究员,博士生导师,研究方向为基因工程与转基因安全评价。 E-mail:wugang@caas.cn
    刘芳(1979—),女,副研究员,硕士生导师,研究方向为基因工程与转基因安全评价。 E-mail:liufang03@caas.cn

Efficient biosynthesis of glucoraphanin in Brassicaceae crops by genetic engineering

Xiaoyue LIU, Pandi WANG, Gang Wu, Fang LIU   

  1. Key Laboratory of Biology and Genetic Breeding of Oil Crops,Ministry of Agriculture and Rural Affairs,Oil Crops Research Institute,Chinese Academy of Agricultural Sciences,Plant Ecological Environment Safety Supervision and Testing Center,Ministry of Agriculture and Rural Affairs,Wuhan,430062,China
  • Online:2024-08-20
  • Contact: Gang Wu, Fang LIU

摘要:

植物次级代谢物萝卜硫苷(Glucoraphanin,GRA)是一种由蛋氨酸衍生的硫代葡萄糖苷(Glucosinolate,GSL),性质相对稳定,其本身及水解后活性产物萝卜硫素(Sulforaphane,SFN)在抵抗癌症、神经保护等方面发挥重要作用,在食品营养和科学研究中受到广泛关注。在本文中,我们将综述GRA的理化性质、来源、生物学功能、合成途径以及当前生产现状,并进一步探讨未来GRA高效生物合成的潜力策略。GRA合成路径复杂,包括侧链延伸、核心结构形成以及侧链修饰三个阶段,可经植物内源黑芥子酶(Myrosinase, MYR)或肠道微生物转化为具有生物活性的SFN等物质。西兰花等十字花科作物中GRA含量较高,是当前GRA的主要来源作物,但其存在种植周期较长、产量不稳,提取率低等问题,开发经济且可再生的GRA新资源将极大的推进GRA开发应用。随着GRA生物合成及调控路径的明晰,基因工程辅助GRA的高效生物合成展现出巨大的潜力,也提示突破主流的单基因调控策略,聚合多基因多维度协同提高GRA合成的潜力。本文聚焦基因工程辅助十字花科作物高效生产GRA这一目标,系统的梳理了GRA合成各阶段的潜在候选基因并从富集部位角度指出了具高应用价值的底盘作物,以期为将来通过基因工程和分子育种技术调控植物中GRA的生物合成,实现GRA大规模可持续生产提供一定的思路和策略。

关键词: 萝卜硫苷(GRA), 萝卜硫素(SFN), 癌症, 基因工程, 十字花科作物

Abstract:

Glucosinolate (GRA), a secondary metabolite of plants, is a Glucosinolate (GSL) derived from methionine. It is relatively stable in nature, and both GRA and its degradation product Sulforaphane (SFN) plays important roles in cancer resistance, neuroprotection, and other broad biological functions and health-benefits, especially, SFN has been widely reported as the best natural product for cancer prevention. GRA has been widely concerned in food nutrition and scientific research. In this paper, we will review the physicochemical properties, sources, biological functions, synthetic pathways, current production status of GRA, and further discuss the potential strategy for efficient biological synthesis of GRA in the future. The synthesis pathway of GRA is complex, involving three stages: side chain elongation, core structure information, and side chain modification. GRA can be converted into SFN and other active compounds by plant myrosinase (MYR) and intestinal microorganisms. Brassicaceae crops such as broccoli have high levels of GRA, and are currently the main source of GRA. However, the cultivation cycle of GRA-rich plant natural resources is long, the yield is unstable, and the extraction rate is low and the development of economical and renewable new resources of GRA will greatly advance its further development and application. With the clarification of the biosynthesis and regulation pathways of GRA, genetic engineering-assisted efficient biological synthesis of GRA shows great potential, suggesting that the possibility of breaking through the mainstream single gene regulatory strategy and aggregating multiple genes and multiple dimensions to enhancement of GRA synthesis. This paper focuses on the goal of the genetic engineering-assisted efficient biosynthesis of GRA in Brassicaceae corps, systematically outlining potential engineering genes at each stage of GRA synthesis and pointing out high-value base crop species from the perspective of enrichment organs, aiming to provide certain ideas and strategies for the future regulation of GRA biosynthesis in plants through transgenic technology and molecular breeding to realize large-scale sustainable production of GRA.

Key words: glucoraphanin, sulforaphane, cancer, genetic engineering, Brassicaceae corps

中图分类号: