合成生物学 ›› 2025, Vol. 6 ›› Issue (1): 87-104.DOI: 10.12211/2096-8280.2024-042
郑益坤1, 郑婕2, 胡国鹏1
收稿日期:
2024-05-20
修回日期:
2024-09-27
出版日期:
2025-01-31
发布日期:
2025-03-12
通讯作者:
胡国鹏
作者简介:
基金资助:
Yikun ZHENG1, Jie ZHENG2, Guopeng HU1
Received:
2024-05-20
Revised:
2024-09-27
Online:
2025-01-31
Published:
2025-03-12
Contact:
Guopeng HU
摘要:
光遗传学是一种结合光学和遗传学的新型细胞生物学工具。通过引入光激活通道(光敏感蛋白基因)到特定的神经元群体,光遗传学能够以毫秒级精度对这些神经元进行非侵入性光学控制。这一技术的进步为研究学习和记忆的神经生物学基础提供了强大支持。通过在活体动物中精确操控神经元活动,研究人员可以更详细地分析神经网络的功能,探索学习和记忆过程中的分子、细胞和神经回路机制。光遗传学不仅揭示了突触可塑性在记忆形成中的关键作用,还通过特定波长的光激活或抑制神经元,实现记忆的生成、消除和恢复。本文综述了光遗传学工具在学习和记忆研究中的应用,包括不同波长光照对受体的影响、光学刺激对记忆的激活和抑制,以及基于光遗传学的神经功能增强研究方法。然而,在光遗传学的应用过程中仍存在一些挑战,例如开发安全且高效的基因传递载体、优化光敏蛋白的性能、探索其在临床环境中转化的可行性等。解决这些问题对于光遗传学的进一步发展至关重要。未来,随着光遗传学工具的持续优化和跨学科技术的融合应用,这项技术有望在治疗神经系统疾病、增强认知功能与成瘾研究等领域提供新的理论基础和实践方法。
中图分类号:
郑益坤, 郑婕, 胡国鹏. 光遗传学工具在学习记忆中的应用研究[J]. 合成生物学, 2025, 6(1): 87-104.
Yikun ZHENG, Jie ZHENG, Guopeng HU. Research on the application of optogenetic tools in learning and memory[J]. Synthetic Biology Journal, 2025, 6(1): 87-104.
图1 突触连接强化示意图(图中展示神经元A、R和B之间的突触连接如何通过重复的电生理刺激得到增强。该过程模拟信息的重复编码机制,并反映了形成长期记忆的基本原理。根据Hebb法则,如果两个神经元频繁且近距离地共同活动,相关突触连接将得到加强,从而提高信息传递的效率并增强突触后的反应能力)
Fig.1 Diagram of strengthening synaptic connections(The diagram illustrates how synaptic connections between neurons A, R, and B are strengthened through repeated electrophysiological stimulations. This process simulates the mechanism of repeated encoding of information and reflects the fundamental principles of long-term memory formation. According to Hebb’s rule, if two neurons frequently and closely act together, the associated synaptic connections will be strengthened, thereby improving the efficiency of information transmission, and enhancing the postsynaptic response.)
图2 通过Hebb法则增强特定神经元突触连接(Hebb法则在突触可塑性中的应用表明,反复激活特定神经元可以增强突触连接,这一机制是学习和记忆形成过程中的基础组成部分)
Fig. 2 Specific neuronal synaptic connections enhanced by the Hebb’s rule(Applications of the Hebb’s rule in synaptic plasticity indicate that repeated activation of specific neurons can enhance synaptic connections, a mechanism that is fundamental in the processes of learning and memory formation.)
1 | ZHANG F, WANG L P, BRAUNER M, et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 2007, 446(7136): 633-639. |
3 | BOYDEN E S, ZHANG F, BAMBERG E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 2005, 8(9): 1263-1268. |
4 | BAMBERG E, TITTOR J, OESTERHELT D. Light-driven proton or chloride pumping by halorhodopsin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(2): 639-643. |
5 | MIESENBÖCK G, DE ANGELIS D A, ROTHMAN J E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins[J]. Nature, 1998, 394(6689): 192-195. |
6 | NAGEL G, OLLIG D, FUHRMANN M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae[J]. Science, 2002, 296(5577): 2395-2398. |
7 | NAGEL G, SZELLAS T, HUHN W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24): 13940-13945. |
8 | BI A D, CUI J J, MA Y P, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration[J]. Neuron, 2006, 50(1): 23-33. |
9 | YANG Y Y, WU M Z, WEGENER A J, et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience[J]. Nature Protocols, 2022, 17(4): 1073-1096. |
10 | SRIDHARAN S, GAJOWA M A, OGANDO M B, et al. High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks[J]. Neuron, 2022, 110(7): 1139-1155.e6. |
11 | YIZHAR O, FENNO L E, DAVIDSON T J, et al. Optogenetics in neural systems[J]. Neuron, 2011, 71(1): 9-34. |
12 | GRADINARU V, ZHANG F, RAMAKRISHNAN C, et al. Molecular and cellular approaches for diversifying and extending optogenetics[J]. Cell, 2010, 141(1): 154-165. |
13 | ZHAO S L, TING J T, ATALLAH H E, et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function[J]. Nature Methods, 2011, 8(9): 745-752. |
14 | HONG W, JIANG C P, QIN M, et al. Self-adaptive cardiac optogenetics device based on negative stretching-resistive strain sensor[J]. Science Advances, 2021, 7(48): eabj4273. |
15 | FENNO L E, MATTIS J, RAMAKRISHNAN C, et al. Targeting cells with single vectors using multiple-feature Boolean logic[J]. Nature Methods, 2014, 11(7): 763-772. |
16 | SHEMESH O A, TANESE D, ZAMPINI V, et al. Temporally precise single-cell-resolution optogenetics[J]. Nature Neuroscience, 2017, 20(12): 1796-1806. |
17 | LIEWALD J F, BRAUNER M, STEPHENS G J, et al. Optogenetic analysis of synaptic function[J]. Nature Methods, 2008, 5(10): 895-902. |
18 | EHMANN N, PAULS D. Optogenetics: illuminating neuronal circuits of memory formation[J]. Journal of Neurogenetics, 2020, 34(1): 47-54. |
19 | CHEN W Q, LI C, LIANG W M, et al. The roles of optogenetics and technology in neurobiology: a review[J]. Frontiers in Aging Neuroscience, 2022, 14: 867863. |
20 | SINNEN B L, BOWEN A B, FORTE J S, et al. Optogenetic control of synaptic composition and function[J]. Neuron, 2017, 93(3): 646-660.e5. |
21 | BÄUML K H T, TRIßL L. Selective memory retrieval can revive forgotten memories[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2114377119. |
22 | CHANALES A J H, DUDUKOVIC N M, RICHTER F R, et al. Interference between overlapping memories is predicted by neural states during learning[J]. Nature Communications, 2019, 10(1): 5363. |
23 | COWAN N. Short-term memory based on activated long-term memory: a review in response to Norris (2017)[J]. Psychological Bulletin, 2019, 145(8): 822-847. |
24 | DAHAL P, RAUHALA O J, KHODAGHOLY D, et al. Hippocampal-cortical coupling differentiates long-term memory processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(7): e2207909120. |
25 | BERDUGO-VEGA G, ARIAS-GIL G, LÓPEZ-FERNÁNDEZ A, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life[J]. Nature Communications, 2020, 11(1): 135. |
26 | FISHER S D, ROBERTSON P B, BLACK M J, et al. Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo [J]. Nature Communications, 2017, 8(1): 334. |
27 | HONORÉ E, KHLAIFIA A, BOSSON A, et al. Hippocampal somatostatin interneurons, long-term synaptic plasticity and memory[J]. Frontiers in Neural Circuits, 2021, 15: 687558. |
28 | GERSTNER W. Biological learning: synaptic plasticity, Hebb rule and Spike TimingDependent plasticity[M/OL]//SAMMUT C, WEBB G I. Encyclopedia of machine learning. Boston, MA: Springer US, 2011: 111-132 [2024-02-01]. . |
29 | CARONI P, DONATO F, MULLER D. Structural plasticity upon learning: regulation and functions[J]. Nature Reviews Neuroscience, 2012, 13(7): 478-490. |
30 | YANG Y, CALAKOS N. Presynaptic long-term plasticity[J]. Frontiers in Synaptic Neuroscience, 2013, 5: 8. |
31 | BAILEY C H, KANDEL E R, HARRIS K M. Structural components of synaptic plasticity and memory consolidation[J]. Cold Spring Harbor Perspectives in Biology, 2015, 7(7): a021758. |
32 | LUO L Q. Architectures of neuronal circuits[J]. Science, 2021, 373(6559): eabg7285. |
33 | KIM C Y, KU M J, QAZI R, et al. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics[J]. Nature Communications, 2021, 12(1): 535. |
34 | BECK S, YU-STRZELCZYK J, PAULS D, et al. Synthetic light-activated ion channels for optogenetic activation and inhibition[J]. Frontiers in Neuroscience, 2018, 12: 643. |
35 | ADAMANTIDIS A, ARBER S, BAINS J S, et al. Optogenetics: 10 years after ChR2 in neurons: views from the community[J]. Nature Neuroscience, 2015, 18(9): 1202-1212. |
36 | MAJUMDER R, FEOLA I, TEPLENIN A S, et al. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system[J]. eLife, 2018, 7: e41076. |
37 | HONJO K, HWANG R Y, TRACEY W D JR. Optogenetic manipulation of neural circuits and behavior in Drosophila larvae[J]. Nature Protocols, 2012, 7(8): 1470-1478. |
38 | LIN J Y, KNUTSEN P M, MULLER A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation[J]. Nature Neuroscience, 2013, 16(10): 1499-1508. |
39 | CHENG M Y, WANG E H, WOODSON W J, et al. Optogenetic neuronal stimulation promotes functional recovery after stroke[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12913-12918. |
40 | ENTCHEVA E, KAY M W. Cardiac optogenetics: a decade of enlightenment[J]. Nature Reviews Cardiology, 2021, 18(5): 349-367. |
41 | HUANG S G, DING M Q, ROELFSEMA M R G,et al. Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1[J]. Science Advances, 2021, 7(28): eabg4619. |
42 | PASTRANA E. Optogenetics: controlling cell function with light[J]. Nature Methods, 2011, 8: 24-25. |
43 | CHENG M Y, ASWENDT M, STEINBERG G K. Optogenetic approaches to target specific neural circuits in post-stroke recovery[J]. Neurotherapeutics, 2016, 13(2): 325-340. |
44 | JOSHI J, RUBART M, ZHU W Q. Optogenetics: background, methodological advances and potential applications for cardiovascular research and medicine[J]. Frontiers in Bioengineering and Biotechnology, 2020, 7: 466. |
45 | IYER S M, DELP S L. Optogenetic regeneration[J]. Science, 2014, 344(6179): 44-45. |
46 | RONZITTI E, CONTI R, ZAMPINI V, et al. Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of Chronos[J]. The Journal of Neuroscience, 2017, 37(44): 10679-10689. |
47 | BANSAL H, PYARI G, ROY S. Optogenetic generation of neural firing patterns with temporal shaping of light pulses[J]. Photonics, 2023, 10(5): 571. |
48 | MIRZAYI P, SHOBEIRI P, KALANTARI A, et al. Optogenetics: implications for Alzheimer’s disease research and therapy[J]. Molecular Brain, 2022, 15(1): 20. |
49 | KOL A, ADAMSKY A, GROYSMAN M, et al. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning[J]. Nature Neuroscience, 2020, 23(10): 1229-1239. |
50 | MANSOURI A, TASLIMI S, BADHIWALA J H, et al. Deep brain stimulation for Parkinson’s disease: meta-analysis of results of randomized trials at varying lengths of follow-up[J]. Journal of Neurosurgery, 2018, 128(4): 1199-1213. |
51 | HUANG W A, STITT I M, NEGAHBANI E, et al. Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform[J]. Nature Communications, 2021, 12(1): 3151. |
52 | CHEN P Y, CHEEN J R, JHENG Y C, et al. Clinical applications and consideration of interventions of electrotherapy for orthopedic and neurological rehabilitation[J]. Journal of the Chinese Medical Association, 2022, 85(1): 24-29. |
53 | YANG Q H, SONG D, XIE Z, et al. Optogenetic stimulation of CA3 pyramidal neurons restores synaptic deficits to improve spatial short-term memory in APP/PS1 mice[J]. Progress in Neurobiology, 2022, 209: 102209. |
54 | DENG W W, WU G Y, MIN L X, et al. Optogenetic neuronal stimulation promotes functional recovery after spinal cord injury[J]. Frontiers in Neuroscience, 2021, 15: 640255. |
55 | LU C B, WU X L, MA H Z, et al. Optogenetic stimulation enhanced neuronal plasticities in motor recovery after ischemic stroke[J]. Neural Plasticity, 2019, 2019: 5271573. |
56 | PATEL M, LI Y, ANDERSON J, et al. Gsx1 promotes locomotor functional recovery after spinal cord injury[J]. Molecular Therapy, 2021, 29(8): 2469-2482. |
57 | OSAKI T, UZEL S G M, KAMM R D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons[J]. Science Advances, 2018, 4(10): eaat5847. |
58 | KOBLINGER K, JEAN-XAVIER C, SHARMA S, et al. Optogenetic activation of A11 region increases motor activity[J]. Frontiers in Neural Circuits, 2018, 12: 86. |
59 | WATANABE H, SANO H, CHIKEN S, et al. Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex[J]. Nature Communications, 2020, 11(1): 3253. |
60 | CONTI E, SCAGLIONE A, DE VITO G, et al. Combining optogenetic stimulation and motor training improves functional recovery and perilesional cortical activity[J]. Neurorehabilitation and Neural Repair, 2022, 36(2): 107-118. |
61 | TAN J K, NAZAR F H, MAKPOL S, et al. Zebrafish: a pharmacological model for learning and memory research[J]. Molecules, 2022, 27(21): 7374. |
62 | FRANKLAND P W, JOSSELYN S A, KÖHLER S. The neurobiological foundation of memory retrieval[J]. Nature Neuroscience, 2019, 22(10): 1576-1585. |
63 | TANG L F, PRUITT P J, YU Q J, et al. Differential functional connectivity in anterior and posterior hippocampus supporting the development of memory formation[J]. Frontiers in Human Neuroscience, 2020, 14: 204. |
64 | DRISKILL C M, CHILDS J E, ITMER B, et al. Acute vagus nerve stimulation facilitates short term memory and cognitive flexibility in rats[J]. Brain Sciences, 2022, 12(9): 1137. |
65 | NABAVI S, FOX R, PROULX C D, et al. Engineering a memory with LTD and LTP[J]. Nature, 2014, 511(7509): 348-352. |
66 | YAMAMOTO N, MARKS W D, KITAMURA T. Cell-type-specific optogenetic techniques reveal neural circuits crucial for episodic memories[M/OL]//YAWO H, KANDORI A, KOIZUMI A, et al. Advances in experimental medicine and biology. Singapore: Springer Singapore, 2021, 1293: 429-447. (2021-01-06)[2024-02-01]. . |
67 | WANG Y, WANG K, HU X Y, et al. Optogenetics-inspired fluorescent synaptic devices with nonvolatility[J]. ACS Nano, 2023, 17(4): 3696-3704. |
68 | KLOC M L, VELASQUEZ F, NIEDECKER R W, et al. Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition[J]. Brain Stimulation, 2020, 13(6): 1535-1547. |
69 | LEBLANC H, RAMIREZ S. Linking social cognition to learning and memory[J]. The Journal of Neuroscience, 2020, 40(46): 8782-8798. |
70 | NAGASAWA Y, UEDA H H, KAWABATA H, et al. LOV2-based photoactivatable CaMKⅡ and its application to single synapses: local optogenetics[J]. Biophysics and Physicobiology, 2023, 20(2): e200027. |
71 | BHATTACHARYYA M, KARANDUR D, KURIYAN J. Structural insights into the regulation of Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ)[J]. Cold Spring Harbor Perspectives in Biology, 2020, 12(6): a035147. |
72 | ROSTAS J A P, SKELDING K A. Calcium/calmodulin-stimulated protein kinase Ⅱ (CaMKⅡ): different functional outcomes from activation, depending on the cellular microenvironment[J]. Cells, 2023, 12(3): 401. |
73 | ZHANG X J, CONNELLY J, LEVITAN E S, et al. Calcium/calmodulin-dependent protein kinase Ⅱ in cerebrovascular diseases[J]. Translational Stroke Research, 2021, 12(4): 513-529. |
74 | PEREDA D, AL-OSTA I, OKOROCHA A E, et al. Changes in presynaptic calcium signalling accompany age-related deficits in hippocampal LTP and cognitive impairment[J]. Aging Cell, 2019, 18(5): e13008. |
75 | YASUDA R, HAYASHI Y, HELL J W. CaMKⅡ: a central molecular organizer of synaptic plasticity, learning and memory[J]. Nature Reviews Neuroscience, 2022, 23(11): 666-682. |
76 | WIDEMAN C E, HUFF A E, MESSER W S JR, et al. Muscarinic receptor activation overrides boundary conditions on memory updating in a calcium/calmodulin-dependent manner[J]. Neuropsychopharmacology, 2023, 48(9): 1358-1366. |
77 | GOTO A, BOTA A, MIYA K, et al. Stepwise synaptic plasticity events drive the early phase of memory consolidation[J]. Science, 2021, 374(6569): 857-863. |
78 | ROBINSON N T M, DESCAMPS L A L, RUSSELL L E, et al. Targeted activation of hippocampal place cells drives memory-guided spatial behavior[J]. Cell, 2020, 183(6): 1586-1599.e10. |
79 | CALÌ T, BRINI M, CARAFOLI E. Regulation of cell calcium and role of plasma membrane calcium ATPases[J]. International Review of Cell and Molecular Biology, 2017, 332: 259-296. |
80 | HOLAHAN M R, TZAKIS N, OLIVEIRA F A. Developmental aspects of glucose and calcium availability on the persistence of memory function over the lifespan[J]. Frontiers in Aging Neuroscience, 2019, 11: 253. |
81 | VIGIL F A, GIESE K P. Calcium/calmodulin-dependent kinase Ⅱ and memory destabilization: a new role in memory maintenance[J]. Journal of Neurochemistry, 2018, 147(1): 12-23. |
82 | KOOK Y H, LEE H, LEE J S, et al. AAV-compatible optogenetic tools for activating endogenous calcium channels in vivo [J]. Molecular Brain, 2023, 16(1): 73. |
83 | WILLETT R T, BAYIN N S, LEE A S, et al. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth[J]. eLife, 2019, 8: e50617. |
84 | SZABO A, SOMOGYI J, CAULI B, et al. Calcium-permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types[J]. The Journal of Neuroscience, 2012, 32(19): 6511-6516. |
85 | ORJATSALO M, ALAKUIJALA A, PARTINEN M. Heart rate variability in head-up tilt tests in adolescent postural tachycardia syndrome patients[J]. Frontiers in Neuroscience, 2020, 14: 725. |
86 | KYUNG T Y, LEE S K, KIM J E, et al. Optogenetic control of endogenous Ca2+ channels in vivo [J]. Nature Biotechnology, 2015, 33(10): 1092-1096. |
87 | DELABY C, ALCOLEA D, CARMONA-IRAGUI M, et al. Differential levels of Neurofilament Light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders[J]. Scientific Reports, 2020, 10(1): 9161. |
88 | SEIDENTHAL M, JÁNOSI B, ROSENKRANZ N, et al. pOpsicle: an all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity[J]. Frontiers in Cellular Neuroscience, 2023, 17: 1120651. |
89 | REDONDO R L, KIM J, ARONS A L, et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram[J]. Nature, 2014, 513(7518): 426-430. |
90 | TONEGAWA S, PIGNATELLI M, ROY D S, et al. Memory engram storage and retrieval[J]. Current Opinion in Neurobiology, 2015, 35: 101-109. |
91 | ROY D S, ARONS A, MITCHELL T I, et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease[J]. Nature, 2016, 531(7595): 508-512. |
92 | HAJJO R, SABBAH D A, ABUSARA O H, et al. A review of the recent advances in Alzheimer’s disease research and the utilization of network biology approaches for prioritizing diagnostics and therapeutics[J]. Diagnostics, 2022, 12(12): 2975. |
93 | ABUBAKAR M B, SANUSI K O, UGUSMAN A, et al. Alzheimer’s disease: an update and insights into pathophysiology[J]. Frontiers in Aging Neuroscience, 2022, 14: 742408. |
94 | ROY D S, PARK Y G, KIM M E, et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions[J]. Nature Communications, 2022, 13(1): 1799. |
95 | ROY D S, KITAMURA T, OKUYAMA T, et al. Distinct neural circuits for the formation and retrieval of episodic memories[J]. Cell, 2017, 170(5): 1000-1012.e19. |
96 | KIM S K, KIM N R, LEE J S, et al. Dynamic Fas signaling network regulates neural stem cell proliferation and memory enhancement[J]. Science Advances, 2020, 6(17): eaaz9691. |
97 | MCNALLY G P, JEAN-RICHARD-DIT-BRESSEL P, MILLAN E Z, et al. Pathways to the persistence of drug use despite its adverse consequences[J]. Molecular Psychiatry, 2023, 28(6): 2228-2237. |
98 | TOZER L. Massive genetic study finds genes linked to Cannabis addiction[N/OL]. Nature. (2023-11-20)[2024-02-01]. . |
99 | LEVEY D F, GALIMBERTI M, DEAK J D, et al. Multi-ancestry genome-wide association study of Cannabis use disorder yields insight into disease biology and public health implications[J]. Nature Genetics, 2023, 55(12): 2094-2103. |
100 | LI M D, BURMEISTER M. New insights into the genetics of addiction[J]. Nature Reviews Genetics, 2009, 10(4): 225-231. |
101 | ISABELLA A J, LEYVA-DÍAZ E, KANEKO T, et al. The field of neurogenetics: where it stands and where it is going[J]. Genetics, 2021, 218(4): iyab085. |
102 | CAO Z F H, BURDAKOV D, SARNYAI Z. Optogenetics: potentials for addiction research[J]. Addiction Biology, 2011, 16(4): 519-531. |
103 | PASCOLI V, TERRIER J, HIVER A, et al. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction[J]. Neuron, 2015, 88(5): 1054-1066. |
104 | RICH M T, HUANG Y H, TORREGROSSA M M. Plasticity at thalamo-amygdala synapses regulates cocaine-cue memory formation and extinction[J]. Cell Reports, 2019, 26(4): 1010-1020.e5. |
105 | RICH M T, HUANG Y H, TORREGROSSA M M. Using optogenetics to reverse neuroplasticity and inhibit cocaine seeking in rats[J]. Journal of Visualized Experiments, 2021(176): 63185. |
106 | VICKSTROM C R, SNARRENBERG S T, FRIEDMAN V, et al. Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction[J]. Molecular Psychiatry, 2022, 27(1): 640-651. |
107 | TYREE S M, JENNINGS K J, GONZALEZ O C, et al. Optogenetic and pharmacological interventions link hypocretin neurons to impulsivity in mice[J]. Communications Biology, 2023, 6(1): 74. |
108 | ADAMCZYK A K, ZAWADZKI P. The memory-modifying potential of optogenetics and the need for neuroethics[J]. NanoEthics, 2020, 14(3): 207-225. |
109 | MONTANEZ-MIRANDA C, BRAMLETT S N, HEPLER J R. RGS14 expression in CA2 hippocampus, amygdala, and basal ganglia: implications for human brain physiology and disease[J]. Hippocampus, 2023, 33(3): 166-181. |
110 | KIM H K, GSCHWIND T, NGUYEN T M, et al. Optogenetic intervention of seizures improves spatial memory in a mouse model of chronic temporal lobe epilepsy[J]. Epilepsia, 2020, 61(3): 561-571. |
111 | KIM W B, CHO J H. Encoding of contextual fear memory in hippocampal-amygdala circuit[J]. Nature Communications, 2020, 11(1): 1382. |
112 | FENG J J, ZHANG L, CHEN C H, et al. A cognitive neurogenetic approach to uncovering the structure of executive functions[J]. Nature Communications, 2022, 13(1): 4588. |
113 | DAVIS C J, VANDERHEYDEN W M. Optogenetic sleep enhancement improves fear-associated memory processing following trauma exposure in rats[J]. Scientific Reports, 2020, 10(1): 18025. |
114 | VETERE G, TRAN L M, MOBERG S, et al. Memory formation in the absence of experience[J]. Nature Neuroscience, 2019, 22(6): 933-940. |
115 | WANG K W, YE X L, HUANG T, et al. Optogenetics-induced activation of glutamate receptors improves memory function in mice with Alzheimer’s disease[J]. Neural Regeneration Research, 2019, 14(12): 2147-2155. |
116 | PRESTORI F, MONTAGNA I, D’ANGELO E, et al. The optogenetic revolution in cerebellar investigations[J]. International Journal of Molecular Sciences, 2020, 21(7): 2494. |
117 | SHIN H, SON Y, CHAE U, et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo [J]. Nature Communications, 2019, 10(1): 3777. |
118 | FENG Y S, TAN Z X, WU L Y, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease[J]. Ageing Research Reviews, 2020, 64: 101192. |
119 | JAEGER B N, LINKER S B, PARYLAK S L, et al. A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons[J]. Nature Communications, 2018, 9(1): 3084. |
120 | JOHN R A, ACHARYA J, ZHU C, et al. Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks[J]. Nature Communications, 2020, 11(1): 3211. |
121 | 于袁欢, 周阳, 王欣怡, 等. 光遗传学照进生物医学研究进展[J]. 合成生物学, 2023, 4(1): 102-140. |
YU Y H, ZHOU Y, WANG X Y, et al. Advances in optogenetics for biomedical research[J]. Synthetic Biology Journal, 2023, 4(1): 102-140. | |
122 | ORDAZ J D, WU W, XU X M. Optogenetics and its application in neural degeneration and regeneration[J]. Neural Regeneration Research, 2017, 12(8): 1197-1209. |
123 | SUN Y W, LI M R, CAO S Q, et al. Optogenetics for understanding and treating brain injury: advances in the field and future prospects[J]. International Journal of Molecular Sciences, 2022, 23(3): 1800. |
124 | LIU X, QIAO Z, CHAI Y M, et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2015685118. |
[1] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[2] | 刘韧玫, 李乐诗, 杨小燕, 陈显军, 杨弋. RNA转录后代谢时空精密控制技术[J]. 合成生物学, 2023, 4(1): 141-164. |
[3] | 于袁欢, 周阳, 王欣怡, 孔德强, 叶海峰. 光遗传学照进生物医学研究进展[J]. 合成生物学, 2023, 4(1): 102-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||