• 特约评述 •
姜百翼, 钱珑
收稿日期:
2024-11-27
修回日期:
2025-03-03
出版日期:
2025-03-04
通讯作者:
钱珑
作者简介:
基金资助:
Baiyi Jiang, Long Qian
Received:
2024-11-27
Revised:
2025-03-03
Online:
2025-03-04
Contact:
Long Qian
摘要:
基于DNA的活细胞分子记录器技术,通过诱导可遗传的DNA变异,为细胞历史的追溯提供了一种创新手段。作为新一代细胞谱系追踪方法的代表,该技术能够与单细胞测序、多组学测序等技术相集成,帮助科研人员重构细胞发育分化路径及肿瘤起源的谱系发生树,是探究这些核心生物学议题的有效平台。本综述系统性回顾了自2016年以来基于Cas9的分子记录器在谱系追踪领域的技术演变轨迹与应用进展,同时综合分析了一些新型分子记录器的研究动态,并对其优势与局限性进行了评估。自2016年以来,以CRISPR-Cas9系统为核心的分子记录器取得了显著进展,并逐渐成为该领域的主流技术,研究人员在优化编辑效率和增加记录位点等方面进行了充分的探索。尽管如此,以Cas9为基础的分子记录器仍面临CRISPR-Cas9系统固有的限制与挑战,例如DNA双链断裂带来碱基缺失,进而引起记录信息丢失。这促使研究者们探索开发新型分子记录器,以期作为谱系追踪的更高效精准的工具。先导编辑器、DNA结合蛋白融合碱基编辑器以及T7 转录聚合酶融合碱基编辑器等基于新原理的分子记录器能够避免DNA双链断裂,以碱基替换而非碱基缺失的形式写入信息。相较于Cas9系统,它们展现出独特优势,同时也伴随着潜在的风险与挑战。先导编辑器可以以时间顺序的方式记录信息,但脱靶效应仍然是一个问题。DNA结合蛋白融合碱基编辑器提高了编辑效率和特异性,但它们在不同细胞类型中的有效性需要进一步探索。T7 RNA聚合酶融合碱基编辑器已经在体内定向进化系统中取得了成功,但它们目前在哺乳动物系统中的应用仍然有限。未来,基于DNA的分子记录器的研究应着重于优化编辑效率、降低信息丢失率、提高谱系恢复效率,并探索其在复杂生物系统中的应用潜力。
中图分类号:
姜百翼, 钱珑. 活细胞记录器在细胞谱系追踪中的应用和前景[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-082.
Baiyi Jiang, Long Qian. Application and prospect of live cell molecular recorder in cell lineage tracing[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-082.
图1 理想的分子记录器[42-44]和Cas9分子记录器的代表性研究[22,38-40,42-43,48-49](Rosa26 Col1a1:基因组上landing pad位点,用于外源基因的定点整合。R26, pU6, CAG, EF1A:组成型启动子。TetO:诱导型启动子,由rtTA激活。M2-rtTA:诱导系统,由诱导剂doxycycline(dox) 激活。)
Fig. 1 Ideal molecular recorder[42-44] and representative studies of Cas9-based molecular recorders[41-42,45-47,49-51](Rosa26, Col1a1: landing pad sites on genome, for site-specific integration of exogenous genes. R26, pU6, CAG, EFIA: constitutive promoters. TetO: inducible promoter, activated by rtTA. M2-rtTA: inducible system, activated by doxycycline(dox) inducer. )
名称及 参考文献 | 分子 记录器 | 记录窗口 大小/bp | 靶点数量/site | 主要突变类型 | 追踪时间/days | 物种 | 是否稳定整合 | 研究领域 |
---|---|---|---|---|---|---|---|---|
GESTALT[ | Cas9 | 266 | 10 | 碱基删除 | 3 | 斑马鱼 | 否 | 发育 |
scGESTALT[ | Cas9 | 363 | 10 | 碱基删除 | 23-25 | 斑马鱼 | 否 | 发育 |
MARC1[ | Cas9 | 240 | ~20 | 碱基删除 | 19-21 | 小鼠 | 是 | 发育 |
LINNAEUS[ | Cas9 | 75 | 16-32 | 碱基删除 | 5 | 斑马鱼 | 否 | 发育 |
CHYRON[ | Cas9+TdT | 100 | 5 | 碱基插入 | 22 | HEK293T细胞系 | 是 | — |
CARLIN[ | Cas9 | 276 | 10 | 碱基删除 | 7 | 小鼠 | 是 | 发育 |
DARLIN[ | Cas9+TdT | 828 | 30 | 碱基插入 | 7 | 小鼠 | 是 | 发育 |
2021年的一项研究[ | Cas9 | — | ~30 | 碱基删除 | 54 | 小鼠 | 是(仅肿瘤) | 肿瘤 |
KP-TRACER[ | Cas9 | — | 30-90 | 碱基删除 | 150-180 | 小鼠 | 是(嵌合体) | 肿瘤 |
表1 Cas9分子记录器的特点总结(追踪时间:参考文献中的最长实验时间。是否稳定整合:即是否将分子记录器整合到细胞基因组上。)
Table 1 A summary of the characteristics of Cas9-based molecular recorders (Tracing time: Maximal experimental time in the cited study. Stable integration: whether the molecular recorder is integrated into the cell genome.)
名称及 参考文献 | 分子 记录器 | 记录窗口 大小/bp | 靶点数量/site | 主要突变类型 | 追踪时间/days | 物种 | 是否稳定整合 | 研究领域 |
---|---|---|---|---|---|---|---|---|
GESTALT[ | Cas9 | 266 | 10 | 碱基删除 | 3 | 斑马鱼 | 否 | 发育 |
scGESTALT[ | Cas9 | 363 | 10 | 碱基删除 | 23-25 | 斑马鱼 | 否 | 发育 |
MARC1[ | Cas9 | 240 | ~20 | 碱基删除 | 19-21 | 小鼠 | 是 | 发育 |
LINNAEUS[ | Cas9 | 75 | 16-32 | 碱基删除 | 5 | 斑马鱼 | 否 | 发育 |
CHYRON[ | Cas9+TdT | 100 | 5 | 碱基插入 | 22 | HEK293T细胞系 | 是 | — |
CARLIN[ | Cas9 | 276 | 10 | 碱基删除 | 7 | 小鼠 | 是 | 发育 |
DARLIN[ | Cas9+TdT | 828 | 30 | 碱基插入 | 7 | 小鼠 | 是 | 发育 |
2021年的一项研究[ | Cas9 | — | ~30 | 碱基删除 | 54 | 小鼠 | 是(仅肿瘤) | 肿瘤 |
KP-TRACER[ | Cas9 | — | 30-90 | 碱基删除 | 150-180 | 小鼠 | 是(嵌合体) | 肿瘤 |
图2 重建谱系发生树与整合组学数据分析[43,51]、Cas9分子记录器的缺点与错误构建的谱系发生树[3,42,51]
Fig. 2 Reconstructed phylogeny trees and integrated omics data analysis[43,51], shortcomings of Cas9-based molecular recorders and errors in reconstructing phylogeny trees [3,42,51]
图3 三种新型分子记录器的工作原理[64,79,94,98](pegRNA:先导编辑引导RNA。HsAID:碱基编辑器。iSceI:DNA结合蛋白。rtTA:诱导系统。本图图片均来自参考文献并被翻译为中文。)
Fig. 3 The working principles of three novel molecular recorders[64,79,94,98](pegRNA: prime editing guide RNA. HsAID: base-editor. iSceI: DNA binding protein. rtTA: inducible system. Images are all from references and translated into Chinese.)
分子记录器 | 稳定性 | 时序写入 | 特异性 | 编辑窗口大小 | 编辑效率 | 技术发展程度 |
---|---|---|---|---|---|---|
Cas9[ | 易丢失 | 否 | 易脱靶 | 窄 | —— | 高 |
Prime Editing[ | 高 | 是 | 易脱靶 | 窄 | 低于Cas9 | 中 |
DNA结合蛋白[ | 高 | 否 | 强 | 宽 | 高于Cas9 | 中 |
Muta-T7[ | 高 | 否 | 强 | 可调节 | 未知 | 低 |
表2 新型分子记录器与Cas9分子记录器对比分析
Table 2 Comparative analysis of novel molecular recorders and Cas9-based molecular recorder
分子记录器 | 稳定性 | 时序写入 | 特异性 | 编辑窗口大小 | 编辑效率 | 技术发展程度 |
---|---|---|---|---|---|---|
Cas9[ | 易丢失 | 否 | 易脱靶 | 窄 | —— | 高 |
Prime Editing[ | 高 | 是 | 易脱靶 | 窄 | 低于Cas9 | 中 |
DNA结合蛋白[ | 高 | 否 | 强 | 宽 | 高于Cas9 | 中 |
Muta-T7[ | 高 | 否 | 强 | 可调节 | 未知 | 低 |
1 | KESTER L, VAN OUDENAARDEN A. Single-cell transcriptomics meets lineage tracing[J]. Cell Stem Cell, 2018, 23(2): 166-179. |
2 | WAGNER D E, KLEIN A M. Lineage tracing meets single-cell omics: opportunities and challenges[J]. Nature Reviews Genetics, 2020, 21(7): 410-427. |
3 | WEINREB C, RODRIGUEZ-FRATICELLI A, CAMARGO F D, et al. Lineage tracing on transcriptional landscapes links state to fate during differentiation[J]. Science (New York, N.Y.), 2020, 367(6479): eaaw3381. |
4 | VANHORN S, MORRIS S A. Next-generation lineage tracing and fate mapping to interrogate development[J]. Developmental Cell, 2021, 56(1): 7-21. |
5 | SANKARAN V G, WEISSMAN J S, ZON L I. Cellular barcoding to decipher clonal dynamics in disease[J]. Science (New York, N.Y.), 2022, 378(6616): eabm5874. |
6 | WANG Y, ZHANG X, WANG Z. Cellular barcoding: from developmental tracing to anti-tumor drug discovery[J]. Cancer Letters, 2023, 567: 216281. |
7 | FENG J, PUCELLA J N, JANG G, et al. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells[J]. Immunity, 2022, 55(3): 405-422.e11. |
8 | VAN EGEREN D, ESCABI J, NGUYEN M, et al. Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms[J]. Cell Stem Cell, 2021, 28(3): 514-523.e9. |
9 | AALAM S M M, NGUYEN L V, RITTING M L, et al. Clonal tracking in cancer and metastasis[J]. Cancer Metastasis Reviews, 2024, 43(2): 639-656. |
10 | PORTA-PARDO E, VALENCIA A, GODZIK A. Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era[J]. FEBS Letters, 2020, 594(24): 4233-4246. |
11 | KAKIUCHI N, OGAWA S. Clonal expansion in non-cancer tissues[J]. Nature Reviews Cancer, 2021, 21(4): 239-256. |
12 | SINKALA M. Mutational landscape of cancer-driver genes across human cancers[J]. Scientific Reports, 2023, 13(1): 12742. |
13 | TARKOWSKI A K. Mouse chimaeras developed from fused eggs[J]. Nature, 1961, 190: 857-860. |
14 | MINTZ B. Genetic mosaicism in adult mice of quadriparental lineage[J]. Science (New York, N.Y.), 1965, 148(3674): 1232-1233. |
15 | LIVET J, WEISSMAN T A, KANG H, et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system[J]. Nature, 2007, 450(7166): 56-62. |
16 | SNIPPERT H J, VAN DER FLIER L G, SATO T, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells[J]. Cell, 2010, 143(1): 134-144. |
17 | WEISSMAN T A, PAN Y A. Brainbow: new resources and emerging biological applications for multicolor genetic labeling and analysis[J]. Genetics, 2015, 199: 293-306. |
18 | NADALIN F, MARZI M J, PIRRA PISCAZZI M, et al. Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution[J]. Nature Communications, 2024, 15(1): 7609. |
19 | OREN Y, TSABAR M, CUOCO M S, et al. Cycling cancer persister cells arise from lineages with distinct programs[J]. Nature, 2021, 596(7873): 576-582. |
20 | RENZ P F, GHOSHDASTIDER U, BAGHAI SAIN S, et al. In vivo single-cell CRISPR uncovers distinct TNF programmes in tumour evolution[J]. Nature, 2024, 632 |
21 | YU C, MANNAN A M, YVONE G M, et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines[J]. Nature Biotechnology, 2016, 34 |
22 | CORSIELLO S M, NAGARI R T, SPANGLER R D, et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling[J]. Nature Cancer, 2020, 1 |
23 | XIA Y, JI X, JANG I S, et al. Genetic and pharmacological interrogation of cancer vulnerability using a multiplexed cell line screening platform[J]. Communications Biology, 2021, 4 |
24 | MARTÍNEZ-JIMÉNEZ F, MUIÑOS F, SENTÍS I, et al. A compendium of mutational cancer driver genes[J]. Nature Reviews Cancer, 2020, 20 |
25 | PARK S, MALI N M, KIM R, et al. Clonal dynamics in early human embryogenesis inferred from somatic mutation[J]. Nature, 2021, 597 |
26 | SPENCER CHAPMAN M, RANZONI A M, MYERS B, et al. Lineage tracing of human development through somatic mutations[J]. Nature, 2021, 595 |
27 | COORENS T H H, MOORE L, ROBINSON P S, et al. Extensive phylogenies of human development inferred from somatic mutations[J]. Nature, 2021, 597 |
28 | SHETH R U, WANG H H. DNA-based memory devices for recording cellular events[J]. Nature Reviews Genetics, 2018, 19 |
29 | JANG H, YIM S S. Toward DNA-based recording of biological processes[J]. International Journal of Molecular Sciences, 2024, 25 |
30 | SUN J, RAMOS A, CHAPMAN B, et al. Clonal dynamics of native haematopoiesis[J]. Nature, 2014, 514(7522): 322-327. |
31 | FIGUERES-OÑATE M, SÁNCHEZ-GONZÁLEZ R, LÓPEZ-MASCARAQUE L. Deciphering neural heterogeneity through cell lineage tracing[J]. Cellular and Molecular Life Sciences: CMLS, 2021, 78(5): 1971-1982. |
32 | WOODWORTH M B, GIRSKIS K M, WALSH C A. Building a lineage from single cells: genetic techniques for cell lineage tracking[J]. Nature Reviews Genetics, 2017, 18(4): 230-244. |
33 | PEI W, FEYERABEND T B, RÖSSLER J, et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo[J]. Nature, 2017, 548(7668): 456-460. |
34 | PEI W, WANG X, RÖSSLER J, et al. Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice[J]. Nature Protocols, 2019, 14(6): 1820-1840. |
35 | CHOW K K, BUDDE M W, GRANADOS A A, et al. Imaging cell lineage with a synthetic digital recording system[J]. Science (New York, N.Y.), 2021, 372(6538): eabb3099. |
36 | WAGNER D E, WEINREB C, COLLINS Z M, et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo[J]. Science (New York, N.Y.), 2018, 360(6392): 981-987. |
37 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science (New York, N.Y.), 2013, 339(6121): 819-823. |
38 | RAN F A, HSU P D, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8: 2281-2308. |
39 | SANDER J D, JOUNG J K. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32: 347-355. |
40 | WANG J Y, DOUDNA J A. CRISPR technology: a decade of genome editing is only the beginning[J]. Science, 2023, 379: eadd8643. |
41 | MCKENNA A, FINDLAY G M, GAGNON J A, et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing[J]. Science (New York, N.Y.), 2016, 353(6298): aaf7907. |
42 | LI L, BOWLING S, MCGEARY S E, et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells[J]. Cell, 2023, 186(23): 5183-5199.e22. |
43 | CHAN M M, SMITH Z D, GROSSWENDT S, et al. Molecular recording of mammalian embryogenesis[J]. Nature, 2019, 570(7759): 77-82. |
44 | FARZADFARD F, LU T K. Emerging applications for DNA writers and molecular recorders[J]. Science, 2018, 361(6405): 870-875. |
45 | SPANJAARD B, HU B, MITIC N, et al. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars[J]. Nature Biotechnology, 2018, 36(5): 469-473. |
46 | KALHOR R, KALHOR K, MEJIA L, et al. Developmental barcoding of whole mouse via homing CRISPR[J]. Science (New York, N.Y.), 2018, 361(6405): eaat9804. |
47 | RAJ B, WAGNER D E, MCKENNA A, et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain[J]. Nature Biotechnology, 2018, 36(5): 442-450. |
48 | LOVELESS T B, GROTTS J H, SCHECHTER M W, et al. Lineage tracing and analog recording in mammalian cells by single-site DNA writing[J]. Nature Chemical Biology, 2021, 17(6): 739-747. |
49 | BOWLING S, SRITHARAN D, OSORIO F G, et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells[J]. Cell, 2020, 181(6): 1410-1422.e27. |
50 | QUINN J J, JONES M G, OKIMOTO R A, et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts[J]. Science (New York, N.Y.), 2021, 371(6532): eabc1944. |
51 | YANG D, JONES M G, NARANJO S, et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution[J]. Cell, 2022, 185(11): 1905-1923.e25. |
52 | WANG R, ZHANG R, KHODAVERDIAN A, et al. Theoretical guarantees for phylogeny inference from single-cell lineage tracing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(12): e2203352120. |
53 | SALVADOR-MARTÍNEZ I, GRILLO M, AVEROF M, et al. Is it possible to reconstruct an accurate cell lineage using CRISPR recorders?[J]. eLife, 2019, 8: e40292. |
54 | FORROW A, SCHIEBINGER G. LineageOT is a unified framework for lineage tracing and trajectory inference[J]. Nature Communications, 2021, 12(1): 4940. |
55 | ZAFAR H, TZEN A, NAVIN N, et al. SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models[J]. Genome Biology, 2017, 18(1): 178. |
56 | ZAFAR H, LIN C, BAR-JOSEPH Z. Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data[J]. Nature Communications, 2020, 11(1): 3055. |
57 | KIM I S. DNA barcoding technology for lineage recording and tracing to resolve cell fate determination[J]. Cells, 2023, 13(1): 27. |
58 | BARON C S, VAN OUDENAARDEN A. Unravelling cellular relationships during development and regeneration using genetic lineage tracing[J]. Nature Reviews Molecular Cell Biology, 2019, 20(12): 753-765. |
59 | CHEN M, FU R, CHEN Y, LI L, WANG S W. High-resolution, noninvasive single-cell lineage tracing in mice and humans based on DNA methylation epimutations[J]. Nature Methods, 2025. Published online January 16, 2025. |
60 | JONES M G, KHODAVERDIAN A, QUINN J J, et al. Inference of single-cell phylogenies from lineage tracing data using Cassiopeia[J]. Genome Biology, 2020, 21 |
61 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576: 149-157. |
62 | CHEN P J, LIU D R. Prime editing for precise and highly versatile genome manipulation[J]. Nature Reviews Genetics, 2023, 24: 161-177. |
63 | NELSON J W, RANDOLPH P B, SHEN S P, et al. Engineered pegRNAs improve prime editing efficiency[J]. Nature Biotechnology, 2022, 40: 402-410. |
64 | CHOI J, CHEN W, MINKINA A, et al. A time-resolved, multi-symbol molecular recorder via sequential genome editing[J]. Nature, 2022, 608 |
65 | LIAO H, CHOI J, SHENDURE J. Molecular recording using DNA Typewriter[J]. Nature Protocols, 2024, 10.1038/s41596-024-01003-0. Advance online publication. |
66 | CHEN W, CHOI J, LI X, et al. Symbolic recording of signalling and cis-regulatory element activity to DNA[J]. Nature, 2024. |
67 | KOCAK D D, JOSEPHS E A, BHANDARKAR V, et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures[J]. Nature Biotechnology, 2019, 37: 657-666. |
68 | COELHO M A, DE BRAEKELEER E, FIRTH M, et al. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs[J]. Nature Communications, 2020, 11: 4132. |
69 | LI A, MITSUNOBU H, YOSHIOKA S, et al. Cytosine base editing systems with minimized off-target effect and molecular size[J]. Nature Communications, 2022, 13: 4531. |
70 | CABRERA A, EDELSTEIN H I, GLYKOFRYDIS F, et al. The sound of silence: transgene silencing in mammalian cell engineering[J]. Cell Systems, 2022, 13(12): 950-973. |
71 | ALLSHIRE R C, MADHANI H D. Ten principles of heterochromatin formation and function[J]. Nature Reviews Molecular Cell Biology, 2018, 19(4): 229-244. |
72 | ALHAJI S Y, NGAI S C, ABDULLAH S. Silencing of transgene expression in mammalian cells by DNA methylation and histone modifications in gene therapy perspective[J]. Biotechnology & Genetic Engineering Reviews, 2019, 35(1): 1-25. |
73 | LYKO F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation[J]. Nature Reviews Genetics, 2018, 19(2): 81-92. |
74 | HUGHES A L, KELLEY J R, KLOSE R J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2020, 1863(8): 194567. |
75 | LI X, CHEN W, MARTIN B K, et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing[J]. Cell, 2024, 187(10): 2411-2427.e25. |
76 | FONFARA I, CURTH U, PINGOUD A, WENDE W. Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases[J]. Nucleic Acids Research, 2012, 40(2): 847-860. |
77 | LIU K, DENG S, YE C, et al. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development[J]. Nature Methods, 2021, 18(12): 1506-1514. |
78 | LIU Z, ZENG H, XIANG H, DENG S, HE X. Achieving single-cell-resolution lineage tracing in zebrafish by continuous barcoding mutations during embryogenesis[J]. Journal of Genetics and Genomics, 2024, 51(9): 947-956. |
79 | LU Z, MO S, XIE D, et al. Polyclonal-to-monoclonal transition in colorectal precancerous evolution[J]. Nature, 2024, 636(8041): 233-240. |
80 | HWANG B, LEE W, YUM S Y, et al. Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements[J]. Nature Communications, 2019, 10(1): 1234. |
81 | ZHANG X, ZHU B, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. |
82 | YE L, ZHAO D, LI J, et al. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells[J]. Nature Biotechnology, 2024, 10.1038/s41587-023-02050-w. Advance online publication. |
83 | CHEN Z, SCHNEIDER T D. Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases[J]. Nucleic Acids Research, 2005, 33(19): 6172-6187. |
84 | DIETZ A, WEISSER H J, KÖSSEL H, HAUSMANN R. The gene for Klebsiella bacteriophage K11 RNA polymerase: sequence and comparison with the homologous genes of phages T7, T3, and SP6[J]. Molecular & General Genetics: MGG, 1990, 221(2): 283-286. |
85 | WANG W, LI Y, WANG Y, et al. Bacteriophage T7 transcription system: an enabling tool in synthetic biology[J]. Biotechnology Advances, 2018, 36(8): 2129-2137. |
86 | RIO D C. Expression and purification of active recombinant T7 RNA polymerase from E. coli[J]. Cold Spring Harbor Protocols, 2013, 2013(11): pdb.prot078527. |
87 | LEE S S, KANG C. Two base pairs at -9 and -8 distinguish between the bacteriophage T7 and SP6 promoters[J]. The Journal of Biological Chemistry, 1993, 268(26): 19299-19304. |
88 | IMBURGIO D, RONG M, MA K, MCALLISTER W T. Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants[J]. Biochemistry, 2000, 39(34): 10419-10430. |
89 | ZONG Y, ZHANG H M, LYU C, et al. Insulated transcriptional elements enable precise design of genetic circuits[J]. Nature Communications, 2017, 8(1): 52. |
90 | MOORE C L, PAPA L J 3 RD, SHOULDERS M D. A processive protein chimera introduces mutations across defined DNA regions in vivo[J]. Journal of the American Chemical Society, 2018, 140(37): 11560-11564. |
91 | PARK H, KIM S. Gene-specific mutagenesis enables rapid continuous evolution of enzymes in vivo[J]. Nucleic Acids Research, 2021, 49(6): e32. |
92 | SEO D, KOH B, EOM G E, et al. A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo[J]. Nucleic Acids Research, 2023, 51(10): e59. |
93 | MENGISTE A A, WILSON R H, WEISSMAN R F, et al. Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria[J]. Nucleic Acids Research, 2023, 51(6): e31. |
94 | MENGISTE A A, MCDONALD J L, NGUYEN TRAN M T, et al. MutaT7GDE: a single chimera for the targeted, balanced, efficient, and processive installation of all possible transition mutations in vivo[J]. ACS Synthetic Biology, 2024, 10.1021/acssynbio.4c00316. Advance online publication. |
95 | MOLINA R S, RIX G, MENGISTE A A, et al. In vivo hypermutation and continuous evolution[J]. Nature Reviews Methods Primers, 2022, 2: 37. |
96 | BUTT H, RAMIREZ J L M, MAHFOUZ M. Synthetic evolution of herbicide resistance using a T7 RNAP-based random DNA base editor[J]. Life Science Alliance, 2022, 5(12): e202201538. |
97 | CRAVENS A, JAMIL O K, KONG D, et al. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering[J]. Nature Communications, 2021, 12(1): 1579. |
98 | CHEN H, LIU S, PADULA S, et al. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor[J]. Nature Biotechnology, 2020, 38(2): 165-168. |
99 | DIONISI S, PIERA K, BAUMSCHLAGER A, KHAMMASH M. Implementation of a novel optogenetic tool in mammalian cells based on a split T7 RNA polymerase[J]. ACS Synthetic Biology, 2022, 11(8): 2650-2661. |
100 | GHADERI M, SABAHI F, SADEGHI-ZADEH M, et al. Construction of an eGFP expression plasmid under control of T7 promoter and IRES sequence for assay of T7 RNA polymerase activity in mammalian cell lines[J]. Iranian Journal of Cancer Prevention, 2014, 7(3): 137-141. |
101 | QIN C, XIANG Y, LIU J, et al. Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system[J]. Nature Communications, 2023, 14(1): 1500. |
102 | AKHTAR W, DE JONG J, PINDYURIN A V, et al. Chromatin position effects assayed by thousands of reporters integrated in parallel[J]. Cell, 2013, 154(4): 914-927. |
103 | VANHILLE L, GRIFFON A, MAQBOOL M A, et al. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq[J]. Nature Communications, 2015, 6: 6905. |
104 | VAN ARENSBERGEN J, FITZPATRICK V D, DE HAAS M, et al. Genome-wide mapping of autonomous promoter activity in human cells[J]. Nature Biotechnology, 2017, 35(2): 145-153. |
105 | ANDERSSON R, SANDELIN A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nature Reviews Genetics, 2020, 21(2): 71-87. |
[1] | 马孟丹, 尚梦宇, 刘宇辰. CRISPR-Cas9系统在肿瘤生物学中的应用及前景[J]. 合成生物学, 2023, 4(4): 703-719. |
[2] | 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737. |
[3] | 宋斐, 刘宇辰, 蔡志明, 黄卫人. 基于CRISPR/Cas工具的肿瘤基因线路构建及应用[J]. 合成生物学, 2022, 3(1): 53-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||