合成生物学

• 特约评述 •    

生物法回收电池关键金属研究进展

朱思羽1, 赵炫烨2, 虞雯静2, 曹竞天2, 刘思慧3, 钱文达3, 贾海洋2   

  1. 1.北京理工大学医学技术学院,北京 100081
    2.北京理工大学化学与化工学院,北京 102488
    3.北京理工大学生命学院,北京 100081
  • 收稿日期:2025-03-24 修回日期:2025-06-23 出版日期:2025-06-24
  • 通讯作者: 贾海洋
  • 作者简介:朱思羽(2004—),女,本科生。研究方向为蛋白质组学、代谢组学和蛋白质交联和合成生物学相关,所在BIT-China团队荣获2024年合成生物学创新赛金奖、2024年iGEM金奖和三项单项奖提名。 E-mail:1120222466@bit.edu.cn
    贾海洋(1988—),男,教授,博士生导师,研究方向为合成生物学分子调控工具的开发、人工细胞等仿生系统的构建与应用、新型人工细胞代谢工厂设计与工程应用、基于生物大分子的3D打印微型机器人的设计与构建、新型抗体开发与高通量抗体筛选技术的研发等。E-mail:haiyangjia@bit.edu.cn
  • 基金资助:
    科技部, 国家重点研发计划“合成生物学”重点专项-课题(2023YFA0914803)

Advances in Biological Recovery of Key Battery Metals

ZHU Siyu1, ZHAO Xuanye2, YU Wenjing2, CAO Jingtian2, LIU Sihui3, QIAN Wenda3, JIA Haiyang2   

  1. 1.Beijing Institute of Technology,School of Medical Technology,Beijing,100081,China
    2.Beijing Institute of Technology,School of chemistry and chemical engineering,Beijing,102488,China
    3.Beijing Institute of Technology,School of life science,Beijing,100081,China
  • Received:2025-03-24 Revised:2025-06-23 Online:2025-06-24
  • Contact: JIA Haiyang

摘要:

随着新一轮能源革命的加速推进,锂离子电池作为核心储能器件正迎来爆发式增长。然而快速增长的产能背后,大量退役电池引发的资源浪费和环境污染问题日益凸显。这些废弃电池中蕴藏着丰富的锂、钴、镍等高价值战略金属资源,若不妥善回收,不仅造成巨大经济损失,还会因重金属泄露对生态环境构成严重威胁。传统的火法冶金和湿法冶金回收工艺都存在能耗高、污染重等问题,难以满足绿色发展需求。生物法回收技术凭借其低碳排放、低运营成本和环境友好的显著优势,已成为当前研究热点。本文系统阐述了生物浸出、生物吸附、生物富集和生物矿化等生物法回收技术的核心机制,详细分析了微生物代谢产酸浸出、功能菌株筛选吸附、基因工程改造以及矿化产物应用等关键环节的技术突破。生物法回收不仅可缓解关键金属资源短缺,还将推动绿色冶金领域的革新,为循环经济提供新的技术范式,有望在未来逐步实现工业化应用,助力全球锂电产业的可持续发展。

关键词: 生物浸出, 生物吸附, 生物富集, 生物矿化, 电池回收

Abstract:

With the rapid expansion of lithium-ion battery (LIB) production driven by the global energy transition, the disposal of end-of-life batteries has emerged as a critical challenge due to resource depletion and environmental hazards. Conventional pyrometallurgical and hydrometallurgical recycling methods, while dominant, face significant drawbacks such as high energy consumption (exceeding 1000°C for pyrometallurgy), substantial carbon emissions (~3.5 tons CO₂/ton of batteries), and toxic wastewater generation (pH < 2, 2~3 tons/ton of batteries), underscoring the urgent need for sustainable alternatives. Biological recovery technologies, leveraging microbial and fungal metabolic activities, have gained prominence as eco-friendly, low-cost solutions for reclaiming strategic metals like lithium, cobalt, nickel, and manganese. This review systematically examines four core biotechnological approaches—bioleaching, biosorption, bioaccumulation, and biomineralization—detailing their mechanisms, advancements, and industrial scalability. Bioleaching, facilitated by acidophilic bacteria (e.g., Acidithiobacillus ferrooxidans, A. thiooxidans) and fungi (e.g., Aspergillus niger), employs microbial metabolites such as organic acids (citric, gluconic) and Fe³⁺/H₂SO₄ to dissolve metal oxides from battery "black mass," achieving recovery rates of 60~80% for Li and 85~90% for Co/Ni under optimized conditions (30~40°C, pH 1.5~3.0). Innovations in fungal strain engineering and co-culture systems (e.g., sulfur- and iron-oxidizing bacteria) have enhanced leaching kinetics and metal selectivity, while response surface methodology (RSM) has optimized parameters like pulp density (1:5~1:10) and aeration (1 L/min). Biosorption exploits functional groups (e.g., carboxyl, amino) on microbial cell walls to immobilize metal ions via electrostatic interactions, with engineered strains like Escherichia coli expressing metallothioneins demonstrating 7-fold higher Ni²⁺ uptake. Bioaccumulation, enabled by synthetic biology, focuses on intracellular metal transport systems, such as NikABCDE transporters, though challenges like metabolic burden and metal toxicity persist. Biomineralization harnesses microorganisms (e.g., sulfate-reducing bacteria) to precipitate dissolved metals as stable minerals (e.g., MnCO₃, NiS), which can be directly converted into electrode materials. For instance, fungal-synthesized MnCO₃-derived MycMnOx/C composites exhibit exceptional supercapacitor performance (>350 F·g⁻¹) and LIB cycling stability (>90% capacity retention after 200 cycles). Despite these advances, bottlenecks remain, including prolonged leaching cycles, scalability limitations, and the need for genetic engineering to enhance microbial metal tolerance and acid production. Emerging strategies, such as CRISPR-Cas9-mediated pathway optimization, biomimetic ion channels (e.g., NH₂-pillar[5]arene for Li⁺ selectivity), and hybrid biohydrometallurgical processes, promise to bridge these gaps. Coupled with policy incentives and declining operational costs (projected at $1000~2000/ton, 25~40% lower than hydrometallurgy), bio-recovery technologies are poised to revolutionize the LIB recycling industry, aligning with circular economy principles and achieving near-zero carbon emissions (<0.5 tons CO₂/ton of batteries). Future research must prioritize interdisciplinary integration of synthetic biology, materials science, and process engineering to realize industrial-scale deployment, ultimately fostering a sustainable and resilient battery supply chain.

Key words: Bioleaching, Biosorption, Bioaccumulation, Biomineralization, Battery recovery

中图分类号: