合成生物学 ›› 2021, Vol. 2 ›› Issue (3): 371-383.DOI: 10.12211/2096-8280.2020-084

• 特约评述 • 上一篇    下一篇

DNA数据存储:保存策略与数据加密

周廷尧, 罗源, 蒋兴宇   

  1. 南方科技大学生物医学工程系,广东 深圳 518055
  • 收稿日期:2020-12-01 修回日期:2021-03-03 出版日期:2021-06-30 发布日期:2021-07-13
  • 通讯作者: 蒋兴宇
  • 作者简介:周廷尧(1986—),男,博士,副研究员。研究方向为DNA生物矿化、纳米材料制备与可控组装。 E-mail:zhouty@sustech.edu.cn|蒋兴宇(1977—),男,博士,讲席教授。研究方向为生物医学工程、DNA存储、微流控。 E-mail:jiang@sustech.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFA0902600);国家自然科学基金(21907032)

DNA data storage: preservation approach and data encryption

Tingyao ZHOU, Yuan LUO, Xingyu JIANG   

  1. Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen 518055,Guangdong,China
  • Received:2020-12-01 Revised:2021-03-03 Online:2021-06-30 Published:2021-07-13
  • Contact: Xingyu JIANG

摘要:

随着信息技术和互联网应用的不断升级,人类社会进入数据爆炸式增长的时代。为缓解海量数据与存储技术不足之间的矛盾,人们开始寻求新一代的存储方式。DNA作为一种新兴的数据存储媒介,具有巨大的发展潜力,其优势包括超高的数据存储密度(理论可达现有技术106倍)、能耗低以及寿命长(理论可达数十万年)。这些特点可有效克服传统存储介质如硬盘、光盘和固体闪存等的不足。本文以DNA数据存储为主线,阐述了DNA数据存储的基本理论和工作流程,重点介绍了DNA保存的方法与策略研究进展,简要总结了信息安全与数据加密的最新研究成果,最后讨论DNA数据存储现阶段面临的主要挑战及发展趋势,特别是,DNA数据存储效率提升、存储读取高度集成自动化以及数据加密新策略等方面将是DNA数据存储的重要研究方向。相信随着合成生物学的不断发展,DNA数据存储将成为未来最具应用潜力的新型存储方式。

关键词: 数据存储, DNA, 生物矿化, 细胞内保存, 数据加密

Abstract:

With the rapid development of information technology and the Internet, human society has entered a new big data era. According to the global DataSphere by international data corporation (IDC), more than 5.9×1022 bytes of data will be created and consumed within 2020, and a 26% data growth rate will be sustained through 2024. These data have outpaced the existing storage formats' capability, including magnetic, optical and electronic media. To alleviate the growing gap between explosive data production and current storage capability, it is highly desirable to explore novel solutions for data storage. As an emerging data storage medium, DNA offers substantial advantages over conventional media, including ultra-high data storage density (theoretically 106 times higher than existing technology), low energy consumption, and long lifetime (up to several hundred thousand years in theory), and has great potential applications in the future. In this review, we present the basic theory and the workflow of DNA data storage, including encode, write, store and encrypt, random access, read, and decode. We also discuss the research progress on data retention strategies, highlighting in vitro and in vivo DNA storage. In comparison with in vivo strategy, in vitro storage may have the greatest potential for applications in consideration of cost, durability, and scalability. We briefly summarize the latest research about information security and data encryption using DNA. Finally, we discuss the current challenges and emerging trends in DNA data storage. The cost of DNA synthesis and sequencing largely restricts the rapid development of DNA data storage. Further unresolved questions include efficient preservation and feasible random access. To solve the challenges, improving the efficiency of DNA data storage, storage, and reading automation and new strategies for data encryption will be important research directions for DNA data storage. It is believed that with the continuous development of synthetic biology, DNA data storage will become the most promising form for information storage in the future.

Key words: data storage, DNA, biomineralization, in vivo storage, data encryption

中图分类号: