合成生物学 ›› 2021, Vol. 2 ›› Issue (3): 354-370.DOI: 10.12211/2096-8280.2020-089

• 特约评述 • 上一篇    下一篇

DNA微阵列原位化学合成

闫汉, 肖鹏峰, 刘全俊, 陆祖宏   

  1. 东南大学生物科学与生物医学工程学院,生物电子学国家重点实验室,江苏 南京 210096
  • 收稿日期:2020-12-21 修回日期:2021-04-09 出版日期:2021-06-30 发布日期:2021-07-13
  • 通讯作者: 刘全俊,陆祖宏
  • 作者简介:闫汉(1991—),男,博士研究生。研究方向为DNA合成自组装,纳米孔生物分子检测。E-mail:230209118@seu.deu.cn
    刘全俊(1968—),男,教授,博士生导师。研究方向为新一代基因测序、基因芯片、生物与化学传感器、单分子检测。E-mail:lqj@seu.edu.cn
    陆祖宏(1960—),男,教授,博士生导师。研究方向为生物电子学,超分子组装、生物传感器、生物信息技术等。 E-mail:zhl@seu.deu.cn
  • 基金资助:
    国家自然科学基金(60121101)

In situ chemical synthesis of DNA microarrays

Han YAN, Pengfeng XIAO, Quanjun LIU, Zuhong LU   

  1. State Key Laboratory of Bioelectronics,School of Biological Sciences and Biomedical Engineering,Southeast University,Nanjing 210096,Jiangsu,China
  • Received:2020-12-21 Revised:2021-04-09 Online:2021-06-30 Published:2021-07-13
  • Contact: Quanjun LIU, Zuhong LU

摘要:

高通量、快速、低成本DNA合成是合成生物学、DNA信息存储以及DNA芯片等前沿科技领域的重要核心技术。DNA微阵列原位化学合成方法是在亚磷酸酰胺固相化学合成原理的基础上,整合了微电子学、计算科学、分子生物学、光电化学和微纳加工等学科的相关技术,近30年来得到了迅速的发展和应用。DNA微阵列原位化学合成方法根据不同的碱基分配方式可以分为原位光刻法、光敏抗蚀层合成法、光致酸法、喷印合成法、软光刻合成法、电致酸法和压印法以及以这些技术为基础衍生的各种合成方法等。本文对上述不同的DNA微阵列原位化学合成方法及其技术特点进行阐述,并对未来DNA合成方法的发展趋势进行讨论和展望。合成通量和效率方面基于CMOS芯片的电致酸DNA原位化学合成技术在未来10年内将具备较大的发展空间,通过解决芯片上微电极间氢离子串扰问题,有望实现单片TB级的DNA快速低成本合成。

关键词: 合成生物学, DNA合成, DNA原位化学合成, 微阵列, 电致酸

Abstract:

High-throughput, rapid and low-cost DNA synthesis is an important core technology in the research fields such as synthetic biology, DNA storage and DNA chips. The in-situ chemical synthesis of DNA microarrays is based on the principle of solid-phase chemical synthesis of phosphorous acid amides, and integrates the relevant technologies of microelectronics, computational science, molecular biology, photo-electrochemistry and micro-nano processing. In the past 30 years, the technology has developed rapidly. In-situ chemical synthesis methods can be grouped into photolithography, photo-acid methods, electro-acid methods, printing methods and imprinting methods, etc. based on their base allocation strategy. In this paper, we discuss the different in-situ chemical synthesis methods of DNA microarrays and their technical characteristics, as well as the potential development trends of DNA synthesis methods in the future. We believe that in terms of synthesis throughput and efficiency, the CMOS (Complementary Metal Oxide Semiconductor) chip-based in-situ chemical synthesis of electro-acid DNA has tremendous potential in the next decade. By solving the problem of hydrogen ion crosstalk between microelectrodes on the chip, it is expected that the rapid and low-cost synthesis of TB-level DNA can be accomplished on a single chip. As shown in the schematic diagram, the voltage of different areas of the DNA synthesis chip is controlled by computer to selectively deprotect the bases at different sites to achieve high-throughput parallel synthesis of different sequences of DNA. However, the bottleneck comes from the crosstalk between micro-electrodes due to acidic ion diffusion inside CMOS chip, which results in the limitation of synthetic capacity at the hundreds-of-megabyte level. After studying the behavior of hydrogen ion transport at the micrometer scale, the redesigning of CMOS chip with new materials and structures is suggested, aiming to suppress the ion diffusion between micro-electrodes and optimize the structure of microelectrodes and microfluidic channels of the chip and device. It is possible that the synthetic capacity of single chip could reach terabyte-level for CMOS-based in situ parallel DNA chemical synthesis with electro-acidified deprotection in the future, which will significantly accelerate the practical applications of synthetic biology and related technologies.

Key words: synthetic biology, DNA synthesis, DNA microarray in situ chemical synthesis, microarray, electro-acidification

中图分类号: