合成生物学 ›› 2021, Vol. 2 ›› Issue (3): 335-353.DOI: 10.12211/2096-8280.2020-088
黄小罗, 戴俊彪
收稿日期:
2020-12-14
修回日期:
2021-04-07
出版日期:
2021-06-30
发布日期:
2021-07-13
通讯作者:
戴俊彪
作者简介:
基金资助:
Xiaoluo HUANG, Junbiao DAI
Received:
2020-12-14
Revised:
2021-04-07
Online:
2021-06-30
Published:
2021-07-13
Contact:
Junbiao DAI
摘要:
DNA数据存储由于在存储应用上的诸多优点而日渐受到广泛关注。DNA数据存储流程包括将0/1二进制信息转换为A/T/C/G碱基序列,利用人工DNA合成技术将碱基序列合成为DNA多聚物分子,以及通过测序技术进行数据读出等环节。然而,目前的人工DNA合成成本依然高昂,严重制约了以DNA为介质的数据存储技术的快速发展及其产业化应用。人工DNA合成作为DNA数据存储的基础技术和成本关键,是决定DNA数据存储从理论走向应用的主要因素。本文以DNA合成的发展历程出发,系统地总结了其关键技术的研究进展,包括柱式化学寡核苷酸合成、芯片化学寡核苷酸合成、寡核苷酸纯化、寡核苷酸拼装、基因合成纠错与克隆筛选、大片段基因合成组装及基因组合成,以及新一代酶法合成等。同时,进一步总结和分析了DNA合成技术关键参数长度、成本及速度对DNA数据存储商业化发展的影响,以期为DNA数据存储的全流程技术开发和应用研究提供一定的参考和思路。降低DNA合成成本,开发更加高效的基因组合成策略,进一步发展新一代酶法DNA合成技术,以及建立面向DNA数据存储的长片段、低成本、快写入等功能应用的DNA合成技术等是未来DNA合成技术的重要发展趋势。
中图分类号:
黄小罗, 戴俊彪. 人工DNA合成技术:DNA数据存储的基石[J]. 合成生物学, 2021, 2(3): 335-353.
Xiaoluo HUANG, Junbiao DAI. DNA synthesis technology: foundation of DNA data storage[J]. Synthetic Biology Journal, 2021, 2(3): 335-353.
图1 亚磷酰胺四步化学寡核苷酸合成法[18-19,23,90][① Deprotection: DMT (dimethoxytrityl) group on nucleoside phosphoramidite attached to solid carrier is removed by trichloroacetic acid to generate free 5'-OH group. ② Coupling: new DMT-protected nucleoside phosphoramidite was activated by mixing with tetrazole to produce an activated 3' terminal, which was further coupled to free 5'-OH group of previous nucleoside phosphoramidite. ③ Capping: uncoupled 5'-OH group from step 2 was acetylated by adding acetic anhydride and N-methylimidazole; ④ Oxidation: phosphite triester form during coupling reaction is converted to a stable phosphate triester form by oxidant]
Fig. 1 Oligonucleotides synthesis based on four-step "phosphoramide" method[18-19,23,90]
图2 一种单向等温的基因合成方法原理[54-55](In this method, oligonucleotides for gene assembly were specially designed, with a recognition site of type IIS restriction enzyme and an additional sequence complementary to its 3′ end, locating at 5′ end. Sequence can theoretically form a hairpin structure. Under catalysis of isothermal DNA polymerase, restriction enzyme and exonuclease or ligase, multiple oligonucleotides were assembled into double stranded DNA)
Fig. 2 A one-way isothermal gene synthesis method[54-55]
图3 基于3′-O修饰的可逆dNTPs TdT酶法DNA合成示例[99-100](Under catalysis of TdT, first 3′-O modified dNTP is coupled to 3′-OH end of initial primer. Its protective group at 3′-OH end is then cleaved to reveal a new 3′-OH end, which serves as a site where next 3′-O modified dNTP is conjugated. Through cycled reactions, target sequence is synthesized)
Fig. 3 Illustration of TdT enzymatic DNA synthesis based on 3′-O modified reversible dNTPs[99-100]
图4 存储信息碱基利用率与寡核苷酸合成长度之间的关系[本图根据Church等[3]使用的方法,左右引物各22 nt,索引(地址)序列19 nt,假定合成长度不同的情况下,计算存储信息碱基利用率]
Fig. 4 Relationship between base utilization of data storage and oligo length [Referring to methods used by George Church et al., base utilization of data storage is calculated given that oligo length is different, while both the left and right flanking primers are 22 nt, and the index (address) sequence is 19 nt]
图5 DNA合成技术发展与应用(Since first oligonucleotides were made in 1950s, DNA synthesis technology has undergone a rapid development. Development of DNA synthesis technology has also promoted research progress in metabolic engineering, enzyme engineering, antibody engineering, in vitro diagnosis, oligonucleotide drugs, and DNA data storage)
Fig. 5 Development and application of DNA synthesis technology
1 | CEZE L, NIVALA J, STRAUSS K. Molecular digital data storage using DNA [J]. Nature Reviews Genetics, 2019, 20(8): 456-466. |
2 | DONG Y, SUN F, PING Z, et al. DNA storage: research landscape and future prospects [J]. National Science Review, 2020, 7(6): 1092-1107. |
3 | CHURCH G M, GAO Y, KOSURI S. Next-generation digital information storage in DNA [J]. Science, 2012; 337(6102): 1628. |
4 | ERLICH Y, ZIELINSKI D. DNA fountain enables a robust and efficient storage architecture [J]. Science, 2017, 355(6328): 950-954. |
5 | ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage [J]. Nature Biotechnology, 2018, 36(3): 242-248. |
6 | GOLDMAN N, BERTONE P, CHEN S Y, et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA [J]. Nature, 2013, 494(7435): 77-80. |
7 | WATSON J D, CRICK F H. Molecular structure of nucleic acids-a structure for deoxyribose nucleic acid [J]. Nature, 1953, 171(4356):737-738. |
8 | JUNG Y, PARK G S, MOON J H, et al. Comparative analysis of primer-probe sets for RT-qPCR of COVID-19 causative virus (SARS-CoV-2) [J]. ACS Infectious Diseases, 2020, 6(9): 2513-2523. |
9 | LIU Y P, YAO C Y. Rapid and quantitative detection of hepatitis B virus [J]. World Journal of Gastroenterology, 2015, 21(42): 11954-11963. |
10 | COARSEY C T, ESIOB N, NARAYANAN R, et al. Strategies in Ebola virus disease (EVD) diagnostics at the point of care [J]. Critical Reviews in Microbiology, 2017, 43(6): 779-798. |
11 | HU D M, HU S Y, WAN W, et al. Effective optimization of antibody affinity by phage display integrated with high-throughput DNA synthesis and sequencing technologies [J]. PLoS One, 2015, 10(6): e0129125. |
12 | DUNBAR C E, HIGH K A, JOUNG J K, et al. Gene therapy comes of age [J]. Science, 2018, 359(6372): eaan4672. |
13 | NALDINI L. Gene therapy returns to centre stage [J]. Nature, 2015, 526(7573): 351-360. |
14 | LUNDIN K E, GISSBERG O, SMITH C I E. Oligonucleotide therapies: the past and the present [J]. Human Gene Therapy, 2015, 26(8): 475-485. |
15 | SUTTON D W, HAVSTAD P K, KEMP J D. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants [J]. Transgenic Research, 1992, 1(5): 228-236. |
16 | LI S P, JIANG Q, LIU S L, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo [J]. Nature Biotechnology, 2018, 36(3): 258-264. |
17 | MICHELSON A M, TODD A R. Nucleotides part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′: 5′-internucleotidic linkage [J]. Journal of the American Chemical Society, 1955: 2632-2638. |
18 | CARUTHERS M H, BEAUCAGE S L, BECKER C, et al. Deoxyoligonucleotide synthesis via the phosphoramidite method [J]. Gene Amplification and Analysis, 1983, 3: 1-26. |
19 | CARUTHERS M H, BARONE A D, BEAUCAGE S L, et al. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method [J]. Methods in Enzymology, 1987, 154: 287-313. |
20 | REESE C B. The chemical synthesis of oligo- and poly-nucleotides by the phosphotriester approach [J]. Tetrahedron, 1978, 34: 3143-3179. |
21 | KHORANA H G, RAZZELL W E, GILHAM P T, et al. Syntheses of dideoxyribonucleotides [J]. Journal of the American Chemical Society, 1957, 79(4): 1002-1003. |
22 | REESE C B. Oligo- and poly-nucleotides: 50 years of chemical synthesis [J]. Organic & Biomolecular Chemistry, 2005, 3(21): 3851-3868. |
23 | MCBRIDE L J, CARUTHERS M H. An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides [J]. Tetrahedron Letters, 1983, 24(3): 245-248. |
24 | KOZLOV I A, DANG M, SIKES K, et al. Significant improvement of quality for long oligonucleotides by using controlled pore glass with large pores [J]. Nucleosides, Nucleotides & Nucleic Acids, 2005, 24(5/6/7): 1037-1041. |
25 | ALUL R H, SINGMAN C N, ZHANG G, et al. Oxalyl-CPG: a labile support for synthesis of sensitive oligonucleotide derivatives [J]. Nucleic Acids Research, 1991, 19(7): 1527-1532. |
26 | FODOR S P A, RAVA R P, HUANG X H C, et al. Multiplexed biochemical assays with biological chips [J]. Nature, 1993, 364(6437): 555-556. |
27 | LOCKHART D J, DONG H L, BYRNE M C, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays [J]. Nature Biotechnology, 1996, 14(13): 1675-1680. |
28 | GAO X L, LEPROUST E, ZHANG H, et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids [J]. Nucleic Acids Research, 2001, 29(22): 4744-4750. |
29 | SINGH-GASSON S, GREEN R D, YUE Y J, et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array [J]. Nature Biotechnology, 1999, 17(10): 974-978. |
30 | GHINDILIS A L, SMITH M W, SCHWARZKOPF K R, et al. CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection [J]. Biosensors and Bioelectronics, 2007, 22(9/10): 1853-1860. |
31 | HUGHES T R, MAO M, JONES A R, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer [J]. Nature Biotechnology, 2001, 19(4): 342-347. |
32 | QUAN J Y, SAAEM I, TANG N, et al. Parallel on-chip gene synthesis and application to optimization of protein expression [J]. Nature Biotechnology, 2011, 29(5): 449-452. |
33 | LAUSTED C, DAHL T, WARREN C, et al. POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer [J]. Genome Biology, 2004, 5(8): R58. |
34 | IVANETICH K M, AKIYAMA J, SANTI D V, et al. Automated purification of synthetic oligonucleotides [J]. Biotechniques, 1991, 10(6): 704-708. |
35 | LOPEZ-GOMOLLON S, NICOLAS F E. Purification of DNA oligos by denaturing polyacrylamide gel electrophoresis (PAGE) [J]. Methods in Enzymology, 2013, 529: 65-83. |
36 | SINHA N D, JUNG K E. Analysis and purification of synthetic nucleic acids using HPLC [J]. Current Protocols in Nucleic Acid Chemistry, 2015, 61: 10.5.1-10.5.39. |
37 | SEPTAK M. Kinetic studies on depurination and detritylation of CPG-bound intermediates during oligonucleotide synthesis [J]. Nucleic Acids Research, 1996, 24(15): 3053-3058. |
38 | EFCAVITCH J W, HEINER C. Depurination as a yield decreasing mechanism in oligodeoxynucleotide synthesis [J]. Nucleosides Nucleotides & Nucleic Acids, 1985, 4(1/2): 267. |
39 | LEPROUST E M, PECK B J, SPIRIN K, et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process [J]. Nucleic Acids Research, 2010, 38(8): 2522-2540. |
40 | SEKIYA T, CONTRERAS R, TAKEYA T, et al. Total synthesis of a tyrosine suppressor transfer RNA gene. XVII. Transcription, in vitro, of the synthetic gene and processing of the primary transcript to transfer RNA [J]. Journal of Biological Chemistry, 1979, 254(13): 5802-5816. |
41 | AGARWAL K L, BÜCHI H, CARUTHERS M H, et al. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast [J]. Nature, 1970, 227(5253): 27-34. |
42 | GUPTA N K, OHTSUKA E, WEBER H, et al. Studies on polynucleotides. LXXXVII. The joining of short deoxyribopolynucleotides by DNA-joining enzymes [J]. Proceedings of the National Academy of Sciences of the United States of America, 1968, 60(1): 285-292. |
43 | GUPTA N K, OHTSUKA E, SGARAMELLA V, et al. Studies on polynucleotides, 88. Enzymatic joining of chemically synthesized segments corresponding to the gene for alanine-tRNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 1968, 60(4): 1338-1344. |
44 | XIONG A, PENG R, ZHUANG J, et al. Non-polymerase-cycling-assembly-based chemical gene synthesis: strategies, methods, and progress [J]. Biotechnology Advances, 2008, 26(2): 121-134. |
45 | GRUNDSTRÖM T, ZENKE W M, WINTZERITH M, et al. Oligonucleotide-directed mutagenesis by microscale 'shot-gun' gene synthesis [J]. Nucleic Acids Research, 1985, 13(9): 3305-3316. |
46 | EREN M, SWENSON R P. Chemical synthesis and expression of a synthetic gene for the flavodoxin from Clostridium MP [J]. Journal of Biological Chemistry, 1989, 264(25): 14874-14879. |
47 | BARANY F. The ligase chain reaction in a PCR world [J]. Genome Research, 1991, 1: 5-16. |
48 | AU L C, YANG F Y, YANG W J, et al. Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli [J]. Biochemical and Biophysical Research Communications, 1998, 248(1): 200-203. |
49 | JAYARAMAN K, FINGAR S A, SHAH J, et al. Polymerase chain reaction-mediated gene synthesis: synthesis of a gene coding for isozyme c of horseradish peroxidase [J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(10): 4084-4088. |
50 | XIONG A. YAO Q, PENG R,et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences [J]. Nucleic Acids Research, 2004, 32(12): e98. |
51 | STEMMER W P C, CRAMERI A, HA K D, et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides [J]. Gene, 1995, 164(1): 49-53. |
52 | XIONG A, PENG R, ZHUANG J, et al. Chemical gene synthesis: strategies, softwares, error corrections, and applications [J]. FEMS Microbiology Reviews, 2008, 32(3): 522-540. |
53 | YOUNG L, DONG Q. Two-step total gene synthesis method [J]. Nucleic Acids Research, 2004, 32(7): e59. |
54 | 林继伟, 张晓东, 曹雪雁, 等. 一种新的等温单向基因的合成方法[J]. 遗传, 2007, 29(6): 765-770. |
LIN J W, ZHANG X D, CAO X Y,et al. Isothermal unidirectional elongation method of gene synthesis [J]. Hereditas (Beijing), 2007, 29(6): 765-770. | |
55 | 林继伟, 李海阔, 王小兵, 等. 等温单向生长的基因合成方法: CN 200610028886 [P]. 2007-02-07. |
LIN J W, LI H K, WANG X B, et al. Isothermal unidirectional elongation method of gene synthesis: CN 200610028886 [P]. 2007-02-07. | |
56 | 林继伟, 戴俊彪. 一种基于双向等温延伸的核酸合成方法: CN201310219029. 4 [P]. 2019-03-08. LIN J W, DAI J B. Isothermal bidirectional elongation method of nucleic acid synthesis. CN201310219029. 4 [P]. 2019-03-08. |
57 | TIAN J, GONG H, SHENG N, et al. Accurate multiplex gene synthesis from programmable DNA microchips [J]. Nature, 2004, 432(7020): 1050-1054. |
58 | KOSURI S, EROSHENKO N, LEPROUST E M, et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips [J]. Nature Biotechnology, 2010, 28(12): 1295-1299. |
59 | PLESA C, SIDORE A M, LUBOCK N B, et al. Multiplexed gene synthesis in emulsions for exploring protein functional landscapes [J]. Science, 2018, 359(6373): 343-347. |
60 | SIDORE A M, PLESA C, SAMSON J A, et al. DropSynth 2.0: high-fidelity multiplexed gene synthesis in emulsions [J]. Nucleic Acids Research, 2020, 48(16): e95. |
61 | JENSEN M A, FUKUSHIMA M, DAVIS R W. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis [J]. PLoS One, 2010, 5(6): e11024. |
62 | HOOVER D M, LUBKOWSKI J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis [J]. Nucleic Acids Research, 2002, 30(10): e43. |
63 | CARR P A, PARK J S, LEE Y J, et al. Protein-mediated error correction for de novo DNA synthesis [J]. Nucleic Acids Research, 2004, 32(20): e162. |
64 | SMITH J, MODRICH P. Removal of polymerase-produced mutant sequences from PCR products [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 6847-6850. |
65 | ZHANG J, WANG Y F, CHAI B H, et al. Efficient and low-Cost error removal in DNA synthesis by a high-durability MutS [J]. ACS Synthetic Biology, 2020, 9(4): 940-952. |
66 | MA S, SAAEM I, TIAN J. Error correction in gene synthesis technology [J]. Trends in Biotechnology, 2012, 30(3): 147-154. |
67 | SAAEM I, MA S, QUAN J, et al. Error correction of microchip synthesized genes using surveyor nuclease [J]. Nucleic Acids Research, 2012, 40(3): e23. |
68 | LUBOCK N B, ZHANG D, SIDORE A M, et al. A systematic comparison of error correction enzymes by next-generation sequencing [J]. Nucleic Acids Research, 2017, 45(15): 9206-9217. |
69 | ENGLER C, KANDZIA R, MARILLONNET S. A one pot, one step, precision cloning method with high throughput capability [J]. PLoS One, 2008, 3(11): e3647. |
70 | ENGLER C, GRUETZNER R, KANDZIA R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on Type IIS restriction enzymes [J]. PLoS One, 2009, 4(5): e5553. |
71 | GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases [J]. Nature Methods, 2009, 6(5): 343-345. |
72 | ROBINSON C J, DUNSTAN M S, SWAINSTON N, et al. Multifragment DNA assembly of biochemical pathways via automated ligase cycling reaction [J]. Methods in Enzymology, 2018, 608: 369-392. |
73 | DE KOK S, STANTON L H, SLABY T, et al. Rapid and reliable DNA assembly via ligase cycling reaction [J]. ACS Synthetic Biology, 2014, 3(2): 97-106. |
74 | LIANG J, LIU Z, LOW X Z, et al. Twin-primer non-enzymatic DNA assembly: an efficient and accurate multi-part DNA assembly method [J]. Nucleic Acids Research, 2017, 45(11): e94. |
75 | SHETTY R P, ENDY D, KNIGHT T F. Engineering bioBrick vectors from bioBrick parts [J]. Journal of Biological Engineering, 2008, 2: 5. |
76 | WEBER E, ENGLER C, GRUETZNER R, et al. A modular cloning system for standardized assembly of multigene constructs [J]. PLoS One, 2011, 6(2): e16765. |
77 | LI L, JIANG W, LU Y. A modified Gibson assembly method for cloning large DNA fragments with high GC contents [J]. Methods in Molecular Biology, 2018, 1671: 203-209. |
78 | KUIJPERS N G, SOLIS-ESCALANTE D, BOSMAN L. et al. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences [J]. Microbial Cell Factories, 2013, 12: 47. |
79 | GIBSON D G, BENDERS G A, AXELROD K C, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20404-20409. |
80 | SHAO Z, ZHAO H, ZHAO H M. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways [J]. Nucleic Acids Research, 2009, 37(2): e16. |
81 | WILD J, HRADECNA Z, SZYGBALSKI W. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones [J]. Genome Research, 2002, 12(9): 1434-1444. |
82 | SHIZUYA H, BIRREN B, KIM U J, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector [J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(18): 8794-8797. |
83 | CELLO J, PAUL A V, WIMMER E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template [J]. Science, 2002, 297(5583): 1016-1018. |
84 | SMITH H O, HUTCHISON C A, PFANNKOCH C, et al. Generating a synthetic genome by whole genome assembly: ϕX174 bacteriophage from synthetic oligonucleotides [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15440-15445. |
85 | THAO T T N, LABROUSSAA F, EBERT N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform [J]. Nature, 2020, 582(7813): 561-565. |
86 | GIBSON D G, BENDERS G A, ANDREWS-PFANNKOCH C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome [J]. Science, 2008, 319(5867): 1215-1220. |
87 | GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome [J]. Science, 2010, 329(5987): 52-56. |
88 | ANNALURU N, MULLER H, MITCHELL L A, et al. Total synthesis of a functional designer eukaryotic chromosome [J]. Science, 2014, 344(6179): 55-58. |
89 | RICHARDSON S M, MITCHELL L A, STRACQUADANIO G, et al. Design of a synthetic yeast genome [J]. Science, 2017, 355(6329): 1040-1044. |
90 | WANG L, JIANG S, CHEN C, et al. Synthetic genomics: from DNA synthesis to genome design [J]. Angewandte Chemie International Edition, 2018, 57(7): 1748-1756. |
91 | FREDENS J, WANG K, DE LA TORRE D, et al. Total synthesis of Escherichia coli with a recoded genome [J]. Nature, 2019, 569(7757): 514-518. |
92 | VENETZ J E, MEDICO L DEL, WÖLFLE A, et al. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 8070-8079. |
93 | FULLER C W, MIDDENDORF L R, BENNER S A, et al. The challenges of sequencing by synthesis [J]. Nature Biotechnology, 2009, 27(11): 1013-1023. |
94 | BOLLUM F J. Thermal conversion of nonpriming deoxyribonucleic acid to primer [J]. Journal of Biological Chemistry, 1959, 234: 2733-2734. |
95 | BOLLUM F J. Calf thymus polymerase [J]. Journal of Biological Chemistry, 1960, 235: 2399-2403. |
96 | BOLLUM F J. Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus polymerase [J]. Journal of Biological Chemistry, 1962, 237: 1945-1949. |
97 | YAMTICH J, SWEASY J B. DNA polymerase family X: function, structure, and cellular roles [J]. Biochimica et Biophysica Acta, 2010, 1804(5): 1136-1150. |
98 | RAMADAN K, SHEVELEV I, HÜBSCHER U. The DNA-polymerase-X family: controllers of DNA quality [J]. Nature Reviews Molecular Cell Biology, 2004, 5(12): 1038-1043. |
99 | UD-DEAN S M M. A theoretical model for template-free synthesis of long DNA sequence [J]. Systems and Synthetic Biology, 2008, 2(3/4): 67-73. |
100 | MATHEWS A S, YANG H, MONTEMAGNO C. Photo-cleavable nucleotides for primer free enzyme mediated DNA synthesis [J]. Organic and Biomolecular Chemistry, 2016, 14(35): 8278-8288. |
101 | EFCAVITCH W J, SIDDIQI S. Methods and apparatus for synthesizing nucleic acids: US8808989B1 [P]. 2018-08-07. |
102 | PALLUK S, ARLOW DH, DE ROND T, et al. De novo DNA synthesis using polymerasenucleotide conjugates [J]. Nature Biotechnology, 2018, 36(7): 645-650. |
103 | CLARK J M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases [J]. Nucleic Acids Research, 1988, 16(20): 9677-9686. |
104 | HOFF K, HALPAIN M, GARBAGNATI G, et al. Rapid and dynamic nucleic acid hybridization enables enzymatic oligonucleotide synthesis by cyclic reversible termination: a novel mechanism for enzymatic DNA synthesis [EB/OL]. [2021-05-13]. . |
105 | ENGL T E, UHLENBECK O C. Enzymatic oligoribonucleotide synthesis with T4 RNA ligase [J]. Biochemistry, 1978, 17(11): 2069-2076. |
106 | SCHMITZ C, REETZ M T. Solid-phase enzymatic synthesis of oligonucleotides [J]. Organic Letters, 1999, 1(11): 1729-1731. |
107 | TABATABAEI YAZDI S M H, YUAN Y, MA J, et al. A rewritable, random-access DNA-based storage system [J]. Scientific Reports, 2015, 5: 14138. |
108 | SONG L, ZENG A P. Orthogonal information encoding in living cells with high error-tolerance, safety, and fidelity [J]. ACS Synthetic Biology, 2018, 7(3): 866-874. |
109 | NGUYEN H H, PARK J, PARK S J, et al. Long-term stability and integrity of plasmid-based DNA data storage [J]. Polymers, 2018, 10(1): 28. |
110 | GRASS R N, HECKEL R, PUDDU M, et al. Robust chemical preservation of digital information on DNA in silica with error-correcting codes [J]. Angewandte Chemie International Edition, 2015, 54(8): 2552-2555. |
111 | LEE H H, KALHOR R, GOELA N, et al. Terminator-free template-independent enzymatic DNA synthesis for digital information storage [J]. Nature Communications, 2019, 10(1): 2383. |
112 | STEPHANOPOULOS G. Synthetic biology and metabolic engineering [J]. ACS Synthetic Biology, 2012, 1(11): 514-525. |
113 | CURRIN A, SWAINSTON N, DAY P J, et al. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently [J]. Chemical Society Reviews, 2015, 44(5): 1172-1239. |
114 | SIDHU S S, FELLOUSE F A. Synthetic therapeutic antibodies [J]. Nature Chemical Biology, 2006, 2(12): 682-688. |
115 | SLOMOVIC S, PARDEE K, COLLINS J J. Synthetic biology devices for in vitro and in vivo diagnostics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14429-14435. |
116 | HILLSON N, CADDICK M, CAI Y, et al. Building a global alliance of biofoundries [J]. Nature Communications, 2019, 10(1): 2040. |
117 | HAMEDIRAD M, CHAO R, WEISBERG S, et al. Towards a fully automated algorithm driven platform for biosystems design [J]. Nature Communications, 2019, 10(1): 5150. |
118 | CHAO R, MISHRA S, SI T, et al. Engineering biological systems using automated biofoundries [J]. Metabolic Engineering, 2017, 42: 98-108. |
119 | STORCH M, HAINES M C, BALDWIN G S. DNA-BOT: a low-cost, automated DNA assembly platform for synthetic biology [J]. Synthetic Biology, 2020, 5(1): ysaa010. |
120 | CHAO R, LIANG J, TASAN I, et al. Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry [J]. ACS Synthetic Biology, 2017, 6(4): 678-685. |
[1] | 马孟丹, 刘宇辰. 合成生物学在疾病信息记录与实时监测中的应用潜力[J]. 合成生物学, 2023, 4(2): 301-317. |
[2] | 平质, 张颢龄, 陈世宏, 倪鸣, 徐讯, 朱砂, 沈玥. Chamaeleo: DNA存储碱基编解码算法的可拓展集成与系统评估平台[J]. 合成生物学, 2021, 2(3): 412-427. |
[3] | 杨洋, 樊春海. 基于人工染色体的DNA信息存储前沿进展[J]. 合成生物学, 2021, 2(3): 305-308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||