合成生物学

• 评论 •    

生物分子传感中的抗体探针:由碳基计算走向硅基计算

谭骁天1,2, 李睿涵1,2, 杨慧1,2   

  1. 1.中国科学院深圳先进技术研究院生物医学与健康工程研究所,深圳 518055
    2.医学成像科学与技术系统重点实验室,深圳 518055
  • 出版日期:2025-01-06
  • 通讯作者: 谭骁天,杨慧
  • 作者简介:谭骁天(1995—),男,博士,中国科学院深圳先进技术研究院副研究员,硕士生导师,仿生触觉与智能传感研究中心主任助理。谭骁天博士毕业于美国密歇根大学生物医学工程专业。研究方向为光微流生物分子传感技术、激光发射生物传感、面向生物分子探测的蛋白设计等。E-mail:xt.tan@siat.ac.cn
    李睿涵(1997—),男,中国科学院深圳先进技术研究院研究助理。研究方向为面向生物传感的蛋白探针设计。E-mail:rh.li@siat.ac.cn
    杨慧(1983—),女,博士,中国科学院深圳先进技术研究院研究员,博士生导师,仿生触觉与智能传感研究中心主任。杨慧博士毕业于瑞士洛桑联邦理工大学(EPFL),长期致力于生物医学微纳米操控与超灵敏传感技术研究。已于国际一流SCI刊物发表论文40余篇,获专利16项,主持及参与国家及省部级项目10余项。E-mail:hui.yang@siat.ac.cn
  • 基金资助:
    国家自然科学基金(62475279);医学成像科学与技术系统重点实验室研究基金

Antibody probes in biomolecular sensing: transitioning from carbon-based computing to silicon-based computing

Xiaotian TAN1,2, Ruihan LI1,2, Hui YANG1,2   

  1. 1.Institute of Biomedical and Health Engineering,Shenzhen Institutes of Advanced Technology,Chinese Academy of Science,Shenzhen 518055,China
    2.The Key Laboratory of Biomedical Imaging Science and System,Chinese Academy of Sciences,Shenzhen 518055,China
  • Online:2025-01-06
  • Contact: Xiaotian TAN, Hui YANG

摘要:

蛋白质等生物大分子在疾病诊断与治疗、基础科学研究中占据核心地位,而抗体探针作为免疫分析的关键工具,其重要性日益凸显。近年来,抗体探针的设计、预测与生成正经历从传统的基于动物免疫的“碳基计算”向人工智能驱动的“硅基计算”的革命性转型。传统的抗体生成技术依赖动物免疫,不仅效率低下,且难以精准控制。人工智能的引入为抗体设计带来了突破,实现了高特异性、高亲和力抗体探针的快速生成及抗原表位的精准预测。这一转变不仅能提高抗体类蛋白探针的性能,也缩短了研发周期。本文介绍并评论了抗体生成技术的演进历程,分析了人工智能在抗体设计中的应用优势与挑战,并展望了抗体类蛋白探针与新一代生物传感器的协同发展前景。蛋白质从头设计随着蛋白结合蛋白(PBP)预测技术的成熟,研究人员有望通过“硅基计算”与“硅基性能表征”,快速生成满足特定需求的探针分子,同时实现抗原表位及分子功能的精确预测。结合新一代高灵敏生物传感技术,人工智能辅助设计的非天然蛋白探针将显著提升免疫分析灵敏度,拓展可分析的分子信息类型,推动免疫分析向多维化方向发展。这一创新不仅为合成生物学研究开辟了新的研究路径,也将为精准医学诊断方法的开发提供有力支撑。

关键词: 免疫分析, 抗体设计, 碳基计算, 人工智能, 生物传感

Abstract:

The precise recognition, detection, and analysis of protein biomarkers are essential for disease diagnosis and fundamental life sciences research. Antibody probes, known for their high specificity and stability, are central to biomolecular sensing assays. Traditionally, antibody development has relied on "carbon-based" approaches using animal immune systems. However, we are currently undergoing a transformative shift toward "silicon-based" methods driven by artificial intelligence (AI). Conventional techniques, such as animal-based antibody production and phage display–based directed evolution, have long been hindered by low efficiency and limited control over epitope specificity and binding affinity. Recent AI advancements, including de novo protein design and deep learning-driven protein binding protein (PBP) generation, are revolutionizing antibody development. These innovations enable the rapid creation of protein-based biosensing probes (e.g., antibodies and nanobodies) with enhanced specificity and affinity, along with accurate predictions of epitopes and structural features. By overcoming the limitations of traditional methods, AI-driven technologies offer unprecedented control over the design and performance of antibody probes. Furthermore, "silicon-based evaluation" plays a crucial role in PBP generation, allowing for quantitative assessment of binding affinity, stability, and robustness.AI-designed biosensing probes offer the potential to capture a broader spectrum of biomolecular information than traditional antibodies. These probes may be able to detect variations in sequence and conformation, post-translational modifications, abnormal polymerization, and shifts in biological activity. In certain diseases, the abnormal dissociation of multimeric proteins can reveal previously concealed antigenic epitopes, creating disease-specific targets. AI-designed probes could play a crucial role in addressing these complex diagnostic challenges, providing more accurate and nuanced insights in the future.Moreover, modern high-performance biomolecular sensing technologies, such as bead-based chemiluminescent immunoassays (CLIA), digital immunoassay, microfluidic immunoassay and single molecule binding kinetics assays, require highly diverse antibody specificity and affinity. AI-based protein design tools can meet these divergent needs, enabling the integration of AI-engineered biosensing probes with next-generation sensors. This integration not only enhances detection sensitivity but also expands the scope of molecular information that can be analyzed. This paradigm shift represents a new era in biomolecular sensing and offers exciting prospects for precision medicine and synthetic biology.

Key words: immunoassay, antibody designing, carbon-based computing, artificial intelligence, biosensors

中图分类号: