1 |
LUO H, SHI Z, LI N, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J]. Analytical Chemistry, 2001, 73(5): 915-920.
|
2 |
HU M L, ABBASI-AZAD M, MORSALI A, et al. Electrochemical applications of ferrocene-based coordination polymers[J]. Chempluschem, 2021, 85(11): 2397-2418.
|
3 |
HUANG X C, ZHANG J R, ZHANG L L, et al. A sensitive H2O2 biosensor based on carbon nanotubes/tetrathiafulvalene and its application in detecting NADH[J]. Analytical Biochemistry, 2020, 589: 113493.
|
4 |
ITO K, OKUDA-SHIMAZAKI J, KOJIMA K, et al. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors[J]. Biosensors and Bioelectronics, 2021, 176: 112911.
|
5 |
ZHAO M, GAO Y, SUN J Y, et al. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots[J]. Analytical Chemistry, 2015, 87(5): 2615-2622.
|
6 |
袁盛建, 马迎飞. 噬菌体合成生物学研究进展和应用[J]. 合成生物学, 2020, 1(6): 635-655.
|
|
YUAN S J, MA Y F. Advances and applications of phage synthetic biology[J]. Synthetic Biology Journal, 2020, 1(6): 635-655.
|
7 |
GUO Y C, ZHOU Y F, ZHANG X E, et al. Phage display mediated immuno-PCR[J]. Nucleic Acids Research, 2006, 34(8): e62.
|
8 |
SMITH G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705): 1315-1317.
|
9 |
KEHOE J W, KAY B K. Filamentous phage display in the new millennium[J]. Chemical Reviews, 2005, 105(11): 4056-4072.
|
10 |
SMITH G P, PETRENKO V A. Phage display[J]. Chemical Reviews, 1997, 97(2): 391-410.
|
11 |
OH D, QI J, LU Y C, et al. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries[J]. Nature Communications, 2013, 4: 2756.
|
12 |
LEE Y J, YI H, KIM W J, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes[J]. Science, 2009, 324(5930): 1051-1055.
|
13 |
LEE S W, MAO C B, FLYNN C E, et al. Ordering of quantum dots using genetically engineered viruses[J]. Science, 2002, 296(5569): 892-895.
|
14 |
张文静, 李明, 周维, 等. 基于病毒组件的纳米材料的自组装合成、功能化及应用[J]. 合成生物学, 2020, 1(3): 298-318.
|
|
ZHANG W J, LI M, ZHOU W, et al. Self-assembly, biosynthesis, functionalization and applications of virus-based nanomaterials[J]. Synthetic Biology Journal, 2020, 1(3): 298-318.
|
15 |
ZHANG J T, KANKALA R K, MA J Y, et al. Hollow tobacco mosaic virus coat protein assisted self-assembly of one-dimensional nanoarchitectures[J]. Biomacromolecules, 2021, 22(2): 540-545.
|
16 |
ZHANG W J, ZHANG X N, LI F. Virus-based nanoparticles of Simian virus 40 in the field of nanobiotechnology[J]. Biotechnology Journal, 2018, 13(6): 1700619.
|
17 |
ZHANG S, YU H M, YANG J, et al. Design of the nanoarray pattern Fe-Ni bi-metal nanoparticles@M13 virus for the enhanced reduction of p-chloronitrobenzene through the micro-electrolysis effect[J]. Environmental Science: Nano, 2017, 4(4): 876-885.
|
18 |
YOO P J, NAM K T, QI J, et al. Spontaneous assembly of viruses on multilayered polymer surfaces[J]. Nature Materials, 2006, 5(3): 234-240.
|
19 |
CHO W, FOWLER J D, FURST E M, Targeted binding of the M 13 bacteriophage to thiamethoxam organic crystals[J]. Langmuir, 2012, 28(14): 6013-6020.
|
20 |
HUANG Y, CHIANG C Y, LEE S K, et al. Programmable assembly of nanoarchitectures using genetically engineered viruses[J]. Nano Letters, 2005, 5(7): 1429-1434.
|
21 |
YAMAMOTO K, SHI G Y, ZHOU T S, et al. Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors[J]. The Analyst, 2003, 128(3): 249-254.
|
22 |
LIU D L, WU Q, ZOU S, et al. Surface modification of cerasomes with AuNPs@poly(ionic liquid)s for an enhanced stereo biomimetic membrane electrochemical platform[J]. Bioelectrochemistry, 2020, 132: 107411.
|
23 |
WANG B, ZHANG J J, PAN Z Y, et al. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film[J]. Biosensors and Bioelectronics, 2009, 24(5): 1141-1145.
|
24 |
XIN J Y, DOU B X, WANG Z X, et al. Direct electrochemistry of methanobactin functionalized gold nanoparticles on Au electrode[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(7): 4805-4813.
|
25 |
WANG J W, WANG L P, DI J W, et al. Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor[J]. Talanta, 2009, 77(4): 1454-1459.
|
26 |
QIAO Y, TAHARA K, ZHANG Q, et al. Cerasomes: soft interface for redox enzyme electrochemical signal transmission[J]. Chemistry - A European Journal, 2016, 22(4): 1340-1348.
|
27 |
HAMES B D, HOOPER N M, HOUGHTON J D. Instant Notes in Biochemistry [M]. London: Taylor & Francis, 1997: 67.
|
28 |
ZHANG H L, LAI G S, HAN D Y, et al. An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres[J]. Analytical and Bioanalytical Chemistry, 2008, 390(3): 971-977.
|
29 |
MARCUS R A, SUTIN N. Electron transfers in chemistry and biology[J]. Biochimica et Biophysica Acta, 1985, 811(3): 265-322.
|
30 |
CHEN H, JIANG J H, HUANG Y, et al. An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex[J]. Sensors and Actuators B: Chemical, 2006, 117(1): 211-218.
|
31 |
HLELI S, MARTELET C, ABDELGHANI A, et al. An immunosensor for haemoglobin based on impedimetric properties of a new mixed self-assembled monolayer[J]. Materials Science and Engineering: C, 2006, 26(2/3): 322-327.
|