• 特约评述 •
杜瑶1,2, 高宏丹1,2, 刘家坤3,4, 刘孝荣2, 邢志浩2, 张涛5, 马东礼2
收稿日期:
2022-11-26
修回日期:
2023-02-15
出版日期:
2023-02-16
通讯作者:
马东礼
作者简介:
基金资助:
Yao DU1,2, Hongdan GAO1,2, Jiakun LIU3,4, Xiaorong LIU2, Zhihao XING2, Tao ZHANG5, Dongli MA2
Received:
2022-11-26
Revised:
2023-02-15
Online:
2023-02-16
Contact:
Dongli MA
摘要:
CRISPR-Cas系统作为原核生物获得性免疫系统,由簇状规则间隔短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR)和CRISPR相关蛋白(CRISPR-associated proteins, Cas)构成,因其识别和切割特定DNA或RNA序列,而成为分子诊断领域研究的热点。研究人员利用Cas蛋白(Cas12、Cas13、Cas14、Cas3等)结合信号放大和转化技术(荧光法、电位法、比色法、侧向流动技术等),开发了许多高灵敏度、高特异性、低成本的诊断平台,为病原核酸检测提供了新途径。本文介绍了CRISPR-Cas系统的生物学机制及分类,总结现有的基于Cas蛋白反式切割活性开发的病原核酸检测技术,描述其特点、功能和应用场景,并对该系统的未来应用前景进行展望,期望CRISPR-Cas系统成为包括核酸检测在内的多靶标的理想检测平台。
中图分类号:
杜瑶, 高宏丹, 刘家坤, 刘孝荣, 邢志浩, 张涛, 马东礼. CRISPR-Cas系统在病原核酸检测中的研究进展[J]. 合成生物学 : 1-14, doi: 10.12211/2096-8280.2022-068.
Yao DU, Hongdan GAO, Jiakun LIU, Xiaorong LIU, Zhihao XING, Tao ZHANG, Dongli MA. Research progress of CRISPR-Cas system in pathogen nucleic acid detection[J]. Synthetic Biology Journal : 1-14, doi: 10.12211/2096-8280.2022-068.
表1
基于CRISPR-Cas系统开发的部分诊断技术
CRISPR类型 | 技术名称 | 效应蛋白 | 目标分子 | 扩增方式 | 检测线 | 病原体 | 检测技术 |
---|---|---|---|---|---|---|---|
Type Ⅰ-E | CONAN[ | Cas3 | DNA | RT-LAMP | 1 copy | SARS-CoV-2 IAV | 侧向流动分析 |
Type Ⅴ | DETECTR[ | Cas12a | DNA | RPA | aM | HPV16/18 SARS-CoV-2 | 荧光信号 |
OR-DETECTR[ | Cas12a | RNA | RT-RPA | 1-2,5 copies/uL | SARS-CoV-2 H1N1 | 荧光信号、侧向流动分析 | |
HOLMES[ | Cas12a | DNA RNA | PCR | aM | 日本脑炎病毒 伪狂犬病毒 | 荧光信号 | |
HOLMESv2[ | Cas12b | DNA RNA | LAMP | aM | 日本脑炎病毒 | 荧光信号 | |
CDetection[ | AaCas12b | DNA | RPA | nM | HPV16/18、SNPs | 荧光信号 | |
E-CRISPR[ | Cas12a | DNA | - | pM | HPV1、B19、TGFβ1 | 电化学 | |
MoECS[ | Cas12 | DNA | - | fM | SARS-CoV-2 Delta变异株 | 电化学 | |
CRISPR-ENHANCE[ | LbCas12a | RNA | RT-LAMP | SARS-CoV-2、HIV、HCV | 侧向流动分析 | ||
AIOD-CRISPR[ | LbaCas12a | RNA | RPA | 11 copies | SARS-CoV-2 HIV-1 | 荧光信号、视觉法 | |
SCAN[ | Cas12a | DNA RNA | RT-PCR | 13.5 copies/uL | SARS-CoV-2 HIV-1 | 纳米孔传感器 | |
TB-QUICK[ | Cas12b | DNA | LAMP | 1.3copies/uL | 结核分枝杆菌 | 荧光信号 | |
STOPCovid[ | Cas12 | DNA RNA | LAMP | 100copies | SARS-CoV-2 | 荧光信号 | |
STOPCovid.v2[ | Cas12 | DNA RNA | LAMP | 2000 copies/mL | SARS-CoV-2 | 荧光信号 | |
sPAMC[ | LbCas12a | DNA RNA | RPA | 1copy/uL | SARS-CoV-2 | 荧光信号、侧向流动分析 | |
Cas14-DETECTR[ | Cas14a | DNA | RPA | fM | HBoV-1、SNPs | 荧光信号 | |
ACasB[ | Cas14a1 | DNA | - | 400 CFU/mL | 金黄色葡萄球菌 | 荧光信号 | |
Type Ⅵ | SHERLOCK[ | Cas13a | DNA RNA | RPA | aM | 病毒、细菌、SNPs | 荧光信号 |
HUDSON[ | Cas13a | RNA | RT-RPA | 1copy/uL | 寨卡病毒、登革热病毒 | 荧光信号、侧向流动分析 | |
OR-SHERLOCK[ | Cas13a | RNA | RT-RPA | 1-2,5 copies/uL | SARS-CoV-2 H1N1 | 荧光信号、侧向流动分析 | |
SHINE[ | Cas13 | RNA | RT-RPA | 10copies/uL | SARS-CoV-2 | 智能手机(管内荧光读数或侧向流动分析) | |
FIND-IT[ | Lbu Cas13a | RNA | - | 31copies/uL | SARS-CoV-2 | 荧光信号(集成检测器) | |
CARMEN[ | LwCas13a | DNA RNA | PCR或RPA | aM | 169种人类感染病毒 | 荧光信号 | |
mCARMEN[ | LwCas13a | DNA RNA | PCR或RPA | 102copies/uL | 21种人类呼吸道病毒 | 荧光信号 | |
Type Ⅴ Type Ⅵ Type Ⅲ | SHERLOCKv2[ | Cas13 Cas12a Csm6 | DNA RNA | RPA | zM | 病毒、细菌、SNPs | 荧光信号、侧向流动分析 |
1 | HWANG H , HWANG B Y , BUENO J . Biomarkers in Infectious Diseases [J]. Disease markers, 2018, 20(8509127). |
2 | 库婷婷, 刘倩, 桑楠, et al . 几种典型呼吸道病毒的病原学特征及其检测方法 [J]. 环境化学, 2020, 39(4): 841-851. KUT T, LIUQ, SANGN, et al. Pathogenic characteristics and detection methods of several typical respiratory viruses [J]. Environmental Chemistry, 2020, 39(4): 841-851 |
3 | MATTHIJS G , SOUCHE E , ALDERS M , et al . Guidelines for diagnostic next-generation sequencing [J]. European journal of human genetics, 2016, 24(1): 2-5. |
4 | MORENS D M , FAUCI A S . Emerging Pandemic Diseases: How We Got to COVID-19 [J]. Cell, 2020, 182(5): 1077-1092. |
5 | 张礼堃, 邹秉杰, 宋沁馨, et al . PCR技术在新冠病毒核酸检测中的应用 [J]. 医学研究生学报, 2021, 34(05): 539-544. ZHANGLK, ZOUBJ, SONGQX, et al. Application of PCR in novel coronavirus nucleic acid detection [J]. Journal of Medical Postgraduates, 2021, 34(05): 539-544. |
6 | PICKAR-OLIVER A , GERSBACH C A . The next generation of CRISPR-Cas technologies and applications [J]. Nature reviews Molecular cell biology, 2019, 20(8): 490-507. |
7 | BHATTACHARYYA R P , THAKKU S G , HUNG D T . Harnessing CRISPR Effectors for Infectious Disease Diagnostics [J]. ACS infectious diseases, 2018, 4(9): 1278-1282. |
8 | ISHINO Y , SHINAGAWA H , MAKINO K , et al . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. [J]. Journal of bacteriology, 1987, 169(12): 5429-5433. |
9 | JANSEN R , EMBDEN J D , GAASTRA W , et al . Identification of genes that are associated with DNA repeats in prokaryotes [J]. Molecular microbiology, 2002, 43(6): 1565-1575. |
10 | BARRANGOU R . CRISPR-Cas systems and RNA-guided interference [J]. Wiley interdisciplinary reviews, 2013, 4(3): 267-278. |
11 | GARNEAU J E , DUPUIS M È , VILLION M , et al . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468(7320): 67-71. |
12 | YAO R , LIU D , JIA X , et al . CRISPR-Cas9/Cas12a biotechnology and application in bacteria [J]. Synthetic and systems biotechnology, 2018, 3(3): 135-149. |
13 | JACKSON S A , MCKENZIE R E , FAGERLUND R D , et al . CRISPR-Cas: Adapting to change [J]. Science (New York, NY), 2017, 356(6333). |
14 | HILLE F , RICHTER H , WONG S P , et al . The Biology of CRISPR-Cas: Backward and Forward [J]. Cell, 2018, 172(6): 1239-1259. |
15 | GASIUNAS G , SINKUNAS T , SIKSNYS V . Molecular mechanisms of CRISPR-mediated microbial immunity [J]. Cellular and molecular life sciences, 2014, 71(3): 449-465. |
16 | MAKAROVA K S , WOLF Y I , ALKHNBASHI O S , et al . An updated evolutionary classification of CRISPR-Cas systems [J]. Nature reviews Microbiology, 2015, 13(11): 722-736. |
17 | MAKAROVA K S , WOLF Y I , IRANZO J , et al . Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants [J]. Nature reviews Microbiology, 2020, 18(2): 67-83. |
18 | MAKAROVA K S , ZHANG F , KOONIN E V . SnapShot: Class 1 CRISPR-Cas Systems [J]. Cell, 2017, 168(5): 946-946 e941. |
19 | SHMAKOV S , ABUDAYYEH O O , MAKAROVA K S , et al . Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems [J]. Molecular cell, 2015, 60(3): 385-397. |
20 | LI P , WANG L , YANG J , et al . Applications of the CRISPR-Cas system for infectious disease diagnostics [J]. Expert review of molecular diagnostics, 2021, 21(7): 723-732. |
21 | BROUNS S J , JORE M M , LUNDGREN M , et al . Small CRISPR RNAs guide antiviral defense in prokaryotes [J]. Science, 2008, 321(5891): 960-964. |
22 | HAYES R P , XIAO Y , DING F , et al . Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli [J]. Nature, 2016, 530(7591): 499-503. |
23 | ZHENG Y , LI J , WANG B , et al . Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering [J]. Frontiers in bioengineering and biotechnology, 2020, 8: 62. |
24 | YOSHIMI K , TAKESHITA K , YAMAYOSHI S , et al . CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus [J]. iScience, 2022, 25(2). |
25 | HOCHSTRASSER M L , TAYLOR D W , BHAT P , et al . CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(18): 6618-6623. |
26 | ZHAO H , SHENG G , WANG J , et al . Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli [J]. Nature, 2014, 515(7525): 147-150. |
27 | KAZLAUSKIENE M , KOSTIUK G , VENCLOVAS Č , et al . A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems [J]. Science, 2017, 357(6351): 605-609. |
28 | PINILLA-REDONDO R , MAYO-MUñOZ D , RUSSEL J , et al . Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. [J]. Nucleic acids research, 2020, 48(4): 2000-2012. |
29 | SHMAKOV S , SMARGON A , SCOTT D , et al . Diversity and evolution of class 2 CRISPR-Cas systems [J]. Nature reviews Microbiology, 2017, 15(3): 169-182. |
30 | JIANG W , BIKARD D , COX D, et al . RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J]. Nature biotechnology, 2013, 31(3): 233-239. |
31 | JINEK M , CHYLINSKI K , FONFARA I , et al . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-821. |
32 | SWARTS D C , JINEK M . Mechanistic Insights into the cis- and trans-Acting DNase Activities of Cas12a [J]. Molecular cell, 2019, 73(3): 589-600. |
33 | ZENG R , XU J , LU L , et al . Photoelectrochemical bioanalysis of microRNA on yolk-in-shell Au@CdS based on the catalytic hairpin assembly-mediated CRISPR-Cas12a system [J]. Chemical communications (Cambridge, England), 2022, 58(54): 7562-7565. |
34 | CHEN H , LI Z Y , CHEN J , et al . CRISPR/Cas12a-based electrochemical biosensor for highly sensitive detection of cTnI [J]. Bioelectrochemistry (Amsterdam, Netherlands), 2022, 146(108167): 108167. |
35 | KIM D , KIM J , HUR J K , et al . Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells [J]. Nature biotechnology, 2016, 34(8): 863-868. |
36 | XIN C , YIN J , YUAN S , et al . Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption [J]. Nature communications, 2022, 13(1): 022-33346. |
37 | CASTELLE C J , WRIGHTON K C , THOMAS B C , et al . Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling [J]. Current biology, 2015, 25(6): 690-701. |
38 | HARRINGTON L B , BURSTEIN D , CHEN J S , et al . Programmed DNA destruction by miniature CRISPR-Cas14 enzymes [J]. Science (New York, NY), 2018, 362(6416): 839-842. |
39 | KHAN M Z , HAIDER S , MANSOOR S , et al . Targeting Plant ssDNA Viruses with Engineered Miniature CRISPR-Cas14a [J]. Trends in biotechnology, 2019, 37(8): 800-804. |
40 | ANANTHARAMAN V , MAKAROVA K S , BURROUGHS A M , et al . Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing [J]. Biology direct, 2013, 8(15): 1745-6150. |
41 | ABUDAYYEH O O , GOOTENBERG J S , ESSLETZBICHLER P , et al . RNA targeting with CRISPR-Cas13 [J]. Nature, 2017, 550(7675): 280-284. |
42 | COX D, GOOTENBERG J S , ABUDAYYEH O O , et al . RNA editing with CRISPR-Cas13 [J]. Science, 2017, 358(6366): 1019-1027. |
43 | MAKAROVA K S , WOLF Y I , KOONIN E V . Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? [J]. The CRISPR journal, 2018, 1(5): 325-336. |
44 | CONG L , RAN F A , COX D, et al . Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823. |
45 | 李洋, 申晓林, 孙新晓, et al . CRISPR基因编辑技术在微生物合成生物学领域的研究进展 [J]. 合成生物学, 2021, 2(01): 106-120. LIY, SHENXL, SUNXX, et al. Advances of CRISPR gene editing in microbial synthetic biology [J]. Synthetic Biology Journal, 2021, 2(01): 106-120. |
46 | PARDEE K , GREEN A A , TAKAHASHI M K , et al . Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components [J]. Cell, 2016, 165(5): 1255-1266. |
47 | HILTON I B , D'IPPOLITO A M , VOCKLEY C M , et al . Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers [J]. Nature biotechnology, 2015, 33(5): 510-517. |
48 | SLOMOVIC S , PARDEE K , COLLINS J J . Synthetic biology devices for in vitro and in vivo diagnostics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14429-14435. |
49 | LU T K , BOWERS J , KOERIS M S . Advancing bacteriophage-based microbial diagnostics with synthetic biology [J]. Trends in biotechnology, 2013, 31(6): 325-327. |
50 | QUAN J , LANGELIER C , KUCHTA A , et al . FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences [J]. Nucleic acids research, 2019, 47(14). |
51 | ZHOU W , HU L , YING L , et al . A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection [J]. Nature communications, 2018, 9(1): 018-07324. |
52 | YAN W X , HUNNEWELL P , ALFONSE L E , et al . Functionally diverse type V CRISPR-Cas systems [J]. Science (New York, NY), 2019, 363(6422): 88-91. |
53 | LEUNG R K , CHENG Q X , WU Z L , et al . CRISPR-Cas12-based nucleic acids detection systems [J]. Methods (San Diego, Calif), 2022, 203: 276-281. |
54 | NGUYEN L T , SMITH B M , JAIN P K . Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection [J]. Nature communications, 2020, 11(1): 020-18615. |
55 | CHEN J S , MA E , HARRINGTON L B , et al . CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387): 436-439. |
56 | JP B, ID O, X D, et al . CRISPR-Cas12-based detection of SARS-CoV-2 [J]. Nature biotechnology, 2020, 38(7): 870-874. |
57 | LI S Y , CHENG Q X , WANG J M , et al . CRISPR-Cas12a-assisted nucleic acid detection [J]. Cell discovery, 2018, 4(20): 018-0028. |
58 | STRECKER J , JONES S , KOOPAL B , et al . Engineering of CRISPR-Cas12b for human genome editing. [J]. Nature communications, 2019, 10(1): 018-08224. |
59 | LI L , LI S , WU N , et al . HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation [J]. ACS synthetic biology, 2019, 8(10): 2228-2237. |
60 | YAN W X , HUNNEWELL P , ALFONSE L E , et al . Functionally diverse type V CRISPR-Cas systems [J]. Science (New York, NY), 2019, 363(6422): 88-91. |
61 | SAM I K , CHEN Y Y , MA J , et al . TB-QUICK: CRISPR-Cas12b-assisted rapid and sensitive detection of Mycobacterium tuberculosis [J]. The Journal of infection 2021, 83(1): 54-60. |
62 | ZHANG M , LIU C , SHI Y , et al . Selective endpoint visualized detection of Vibrio parahaemolyticus with CRISPR/Cas12a assisted PCR using thermal cycler for on-site application [J]. Talanta, 2020, 214(120818). |
63 | MUKAMA O , WU J , LI Z. ,, LIANG Q , et al . An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids [J]. Biosensors & bioelectronics, 2020, 159(112143). |
64 | XIAO X , LIN Z , HUANG X , et al . Rapid and Sensitive Detection of Vibrio vulnificus Using CRISPR/Cas12a Combined With a Recombinase-Aided Amplification Assay [J]. Frontiers in microbiology, 2021, 12(767315): 767315. |
65 | TENG F , CUI T , FENG G , et al . Repurposing CRISPR-Cas12b for mammalian genome engineering [J]. Cell discovery, 2018, 4: 63. |
66 | TENG F , GUO L , CUI T , et al . CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity [J]. Genome biology, 2019, 20(1): 019-1742. |
67 | NGUYEN L T , GURIJALA J , RANANAWARE S R , et al . CRISPR-ENHANCE: An enhanced nucleic acid detection platform using Cas12a [J]. Methods, 2022, 203: 116-124. |
68 | DAI Y , SOMOZA R A , WANG L , et al . Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor [J]. Angewandte Chemie (International ed in English), 2019, 58(48): 17399-17405. |
69 | WU C , CHEN Z , LI C , et al . CRISPR-Cas12a-Empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of SARS-CoV-2 Delta Variant [J]. Nanomicro Lett, 2022, 14(1): 022-00888. |
70 | LIU X , BU S , FENG J , et al . Electrochemical biosensor for detecting pathogenic bacteria based on a hybridization chain reaction and CRISPR-Cas12a [J]. Analytical and bioanalytical chemistry, 2022, 414(2): 1073-1080. |
71 | LI F , YE Q , CHEN M , et al . An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection [J]. Biosensors & bioelectronics, 2021, 179(113073). |
72 | NOURI R , JIANG Y , LIAN X L , et al . Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN) [J]. ACS Sens, 2020, 5(5): 1273-1280. |
73 | NOURI R , JIANG Y , TANG Z , et al . Detection of SARS-CoV-2 with Solid-State CRISPR-Cas12a-Assisted Nanopores [J]. Nano letters, 2021, 21(19): 8393-8400. |
74 | DING X , YIN K , LI Z , et al . All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus [J]. bioRxiv, 2020, 21(2020). |
75 | VIRUSES C S G O T I C O T O . The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 [J]. Nature microbiology, 2020, 5(4): 536-544. |
76 | RHEE S Y , CLUTTER D , FESSEL W J , et al . Trends in the Molecular Epidemiology and Genetic Mechanisms of Transmitted Human Immunodeficiency Virus Type 1 Drug Resistance in a Large US Clinic Population [J]. Clinical infectious diseases, 2019, 68(2): 213-221. |
77 | LU S , TONG X , HAN Y , et al . Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a [J]. Nature biomedical engineering, 2022, 6(3): 286-297. |
78 | JOUNG J , LADHA A , SAITO M , et al . Point-of-care testing for COVID-19 using SHERLOCK diagnostics [J]. medRxiv, 2020, 8(2020): 20091231. |
79 | JOUNG J , LADHA A , SAITO M , et al . Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing [J]. The New England journal of medicine, 2020, 383(15): 1492-1494. |
80 | ABUDAYYEH O O , GOOTENBERG J S , KONERMANN S , et al . C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J]. Science (New York, NY), 2016, 353(6299). |
81 | A . H. Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics [J]. Viruses, 2019, 11(2). |
82 | KELLNER M J , KOOB J G , GOOTENBERG J S , et al . SHERLOCK: nucleic acid detection with CRISPR nucleases [J]. Nature protocols, 2019, 14(10): 2986-3012. |
83 | GOOTENBERG J S , ABUDAYYEH O O , LEE J W , et al . Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336): 438-442. |
84 | LEE R A , PUIG H , NGUYEN P Q , et al . Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25722-25731. |
85 | GOOTENBERG J S , ABUDAYYEH O O , KELLNER M J , et al . Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 [J]. Science, 2018, 360(6387): 439-444. |
86 | LIU T Y , KNOTT G J , SMOCK D , et al . Accelerated RNA detection using tandem CRISPR nucleases [J]. medRxiv, 2021, 24(2021): 21253328. |
87 | MYHRVOLD C , FREIJE C A , GOOTENBERG J S , et al . Field-deployable viral diagnostics using CRISPR-Cas13 [J]. Science, 2018, 360(6387): 444-448. |
88 | BARNES K G , LACHENAUER A E , NITIDO A , et al . Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time [J]. Nature communications, 2020, 11(1): 020-17994. |
89 | ACKERMAN C M , MYHRVOLD C , THAKKU S G , et al . Massively multiplexed nucleic acid detection with Cas13 [J]. Nature, 2020, 582(7811): 277-282. |
90 | GACH P C , IWAI K , KIM P W , et al . Droplet microfluidics for synthetic biology [J]. Lab on a chip, 2017, 17(20): 3388-3400. |
91 | IWAI K , WEHRS M , GARBER M , et al . Scalable and automated CRISPR-based strain engineering using droplet microfluidics [J]. Microsystems & nanoengineering, 2022, 8(31): 022-00357. |
92 | WELCH N L , ZHU M , HUA C , et al . Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants [J]. Nature medicine, 2022, 28(5): 1083-1094. |
93 | CHEN Y , MEI Y , ZHAO X , et al . Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test [J]. Analytical chemistry, 2020, 92(21): 14846-14852. |
94 | PATCHSUNG M , JANTARUG K , PATTAMA A , et al . Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA [J]. Nature biomedical engineering, 2020, 4(12): 1140-1149. |
95 | ARIZTI-SANZ J , FREIJE C A , STANTON A C , et al . Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2 [J]. Nature communications, 2020, 11(1): 020-19097. |
96 | SUN Y , YU L , LIU C , et al . One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a [J]. Journal of translational medicine, 2021, 19(1): 021-02741. |
97 | EIBERG H , TROELSEN J , NIELSEN M , et al . Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression [J]. Human genetics, 2008, 123(2): 177-187. |
98 | AQUINO-JARQUIN G . CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic [J]. Nanomedicine, 2019, 18: 428-431. |
99 | WEI Y , TAO Z , WAN L , et al . Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection [J]. Biosensors & bioelectronics, 2022, 211(114282). |
100 | KOONIN E V , MAKAROVA K S , ZHANG F. Diversity , classification and evolution of CRISPR-Cas systems [J]. Current opinion in microbiology, 2017, 37: 67-78. |
101 | XIAO Y , LUO M , DOLAN A E , et al . Structure basis for RNA-guided DNA degradation by Cascade and Cas3 [J]. Science (New York, NY), 2018, 361(6397). |
102 | KHAN W A , BARNEY R E , TSONGALIS G J . CRISPR-cas13 enzymology rapidly detects SARS-CoV-2 fragments in a clinical setting [J]. Journal of clinical virology, 2021, 145(105019). |
103 | LIANG M , LI Z , WANG W , et al . A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules [J]. Nature communications, 2019, 10(1): 019-11648. |
104 | ARCHAKOV A I , ASEEV A L , BYKOV V A , et al . Challenges of the Human Proteome Project: 10-Year Experience of the Russian Consortium [J]. Journal of proteome research, 2019, 18(12): 4206-4214. |
105 | TSOU J H , LENG Q , JIANG F . A CRISPR Test for Detection of Circulating Nuclei Acids [J]. Translational oncology, 2019, 12(12): 1566-1573. |
[1] | 杨璐, 吴楠, 白茸茸, 董维亮, 周杰, 姜岷. 基因回路型全细胞微生物传感器的设计、优化与应用[J]. 合成生物学, 2022, 3(6): 1061-1080. |
[2] | 梁晓声, 郭永超, 门冬, 张先恩. 病毒-纳米金杂合导电网络结构在电化学分析的应用[J]. 合成生物学, 2022, 3(2): 415-427. |
[3] | 张萍, 魏文平, 周英, 叶邦策. 解脂耶氏酵母中光控表达系统的构建及其应用研究[J]. 合成生物学, 2021, 2(5): 778-791. |
[4] | 刘倩, 李金根, 张晨阳, 李芳雅, 田朝光. 工业丝状真菌基因组编辑技术研究进展[J]. 合成生物学, 2021, 2(2): 256-273. |
[5] | 张博, 马永硕, 尚轶, 黄三文. 植物合成生物学研究进展[J]. 合成生物学, 2020, 1(2): 121-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||