• 特约评述 •
董颖1, 马孟丹1, 黄卫人1,2
收稿日期:
2023-09-21
修回日期:
2024-03-21
出版日期:
2024-04-17
通讯作者:
黄卫人
作者简介:
Ying DONG1, Mengdan MA1, Weiren HUANG1,2
Received:
2023-09-21
Revised:
2024-03-21
Online:
2024-04-17
Contact:
Weiren HUANG
摘要:
CRISPR-Cas基因编辑技术由于其简便性和高效性,已被广泛应用于生物学、医学、农学等领域的基础与应用研究。目前广泛使用的Cas核酸酶均具有较大的分子量(通常大于1000个氨基酸),而广泛应用于基因治疗中的腺相关病毒(AAV)载体的承载容量却十分有限,在容纳CRISPR核酸酶与gRNA的编码序列之余往往难以承载更多其它功能元件,如碱基编辑、转录调控、多基因编辑等相应元件,这严重限制了其在基因治疗等领域的应用。使用紧凑型Cas蛋白变体的CRISPR-Cas系统可能有助于用AAV产生和传递基因组编辑和调节工具到人类细胞。因此,小型化的CRISPR-Cas系统开发是解决这一技术难题的重要途径,本文主要概括了基于Cas9、Cas12和Cas13蛋白系统在小型化方面的研究进展,包括筛选新型Cas蛋白、缩减蛋白结构域以及引导RNA的改造等,旨在为开发微型精准基因编辑和调控工具提供新思路。目前小型化的CRISPR-Cas系统的局限性主要体现在蛋白分子量的大小和基因编辑的效率、特异性不可兼得上,在未来的研究中若能解决这一问题,获得更小化的结构域,我相信我们不仅能够优化该系统在体内的传递,更有望为临床带来高效率且低损害的治疗方法。
中图分类号:
董颖, 马孟丹, 黄卫人. CRISPR-Cas系统的小型化研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2023-068.
Ying DONG, Mengdan MA, Weiren HUANG. Progress in the miniaturization of CRISPR-Cas systems[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2023-068.
Cas9 | Cas12 | Cas13 | |
---|---|---|---|
靶标类型 | DNA | DNA | RNA |
切割模式 | 产生平末端的DNA双链断裂 | 产生粘性末端的DNA双链断裂(部分产生单链DNA切割断裂) | 产生单链RNA断裂 |
PAM序列(用于识别并结合目标) | 通常需要一个特定的PAM序列 | 需要PAM序列(不同于Cas9) | 不需要PAM序列,直接靶向于RNA |
优势 | 广泛应用,工具资源丰富,操作简单 | 因其需要更小的PAM及其粘性末端而更容易进行编辑 | 针对RNA的编辑能力更强 |
适用场景 | 基因编辑及调控、染色质成像;DNA剪切、修复和替换;转录调控[ | 基因编辑及调控、染色质成像;特异性即时检测[ | RNA编辑、调控翻译水平、RNA修饰;基因沉默;抑制病毒RNA复制[ |
实际应用案例 | 输血依赖性β地中海贫血(TDT)和镰状细胞病(SCD)[ | 检测COVID-19[ | 开发SHERLOCK技术,检测寨卡和登革热病毒的特定菌株[ |
表1 Cas9/Cas12/Cas13的简要特点对比
Table 1 Comparison of brief characteristics of Cas9/Cas12/Cas13
Cas9 | Cas12 | Cas13 | |
---|---|---|---|
靶标类型 | DNA | DNA | RNA |
切割模式 | 产生平末端的DNA双链断裂 | 产生粘性末端的DNA双链断裂(部分产生单链DNA切割断裂) | 产生单链RNA断裂 |
PAM序列(用于识别并结合目标) | 通常需要一个特定的PAM序列 | 需要PAM序列(不同于Cas9) | 不需要PAM序列,直接靶向于RNA |
优势 | 广泛应用,工具资源丰富,操作简单 | 因其需要更小的PAM及其粘性末端而更容易进行编辑 | 针对RNA的编辑能力更强 |
适用场景 | 基因编辑及调控、染色质成像;DNA剪切、修复和替换;转录调控[ | 基因编辑及调控、染色质成像;特异性即时检测[ | RNA编辑、调控翻译水平、RNA修饰;基因沉默;抑制病毒RNA复制[ |
实际应用案例 | 输血依赖性β地中海贫血(TDT)和镰状细胞病(SCD)[ | 检测COVID-19[ | 开发SHERLOCK技术,检测寨卡和登革热病毒的特定菌株[ |
蛋白 | 分子量(kDa) | PAM | spacer(nt) | tracrRNA (nt) | 直接重复序列(DR) | 切割dsDNA | 切割ssDNA | 实验细胞/细菌 |
---|---|---|---|---|---|---|---|---|
SpCas9[ | 160 | 5′-NGG-3′ | 42 | Y | 36 | Y | N | HEK293T |
NmCas9[ | 162.4 | 5′-N4GAYW/N4GYTT-3′或 5′-N4GTCT-3′ | 24 | Y | 24 | Y | N | Mycobacterium smegmatis |
SaCas9[ | 126 | 5′-NNGRRT-3′ | 21-23 | Y | 19-24 | Y | N | Staphylococcus aureus |
CjCas9[ | 108 | 5′-N4RYAC-3′ | 22 | Y | 35 | Y | N | Campylobacter jejuni |
mini-SaCas9[ | 100 | 5′-NNGRRT-3′ | 20 | N | 24 | N | N | Staphylococcus aureus |
Nme2Cas9[ | 160 | 5′-N4CC-3′ | 22-24 | Y | 24 | Y | N | Neisseria meningitidis |
SauriCas9[ | 118 | 5′-NNGG-3′ | 20 | Y | 36 | Y | N | Staphylococcus auricularis |
BlatCas9[ | 120 | 5′-N4CNAA-3′ | 17-24 | Y | 24 | Y | N | HEK9T |
MISER Cas9[ | 100 | 5′-NNRGAA-3′ | 42 | Y | 36 | N | N | Streptococcus pyogenes |
SchCas9[ | 115 | 5′-NNGR-3′ | 21 | Y | 32 | Y | N | / |
Nsp2Cas9[ | 117 | 5′-N4C-3′ | 22-26 | N | 23 | Y | N | / |
IscB[ | 54 | 5′-NWRRNA-3′ | 20 | Y | 206 | Y | N | / |
表2 Cas9的小型化研究
Table 2 Miniaturization studies of Cas9
蛋白 | 分子量(kDa) | PAM | spacer(nt) | tracrRNA (nt) | 直接重复序列(DR) | 切割dsDNA | 切割ssDNA | 实验细胞/细菌 |
---|---|---|---|---|---|---|---|---|
SpCas9[ | 160 | 5′-NGG-3′ | 42 | Y | 36 | Y | N | HEK293T |
NmCas9[ | 162.4 | 5′-N4GAYW/N4GYTT-3′或 5′-N4GTCT-3′ | 24 | Y | 24 | Y | N | Mycobacterium smegmatis |
SaCas9[ | 126 | 5′-NNGRRT-3′ | 21-23 | Y | 19-24 | Y | N | Staphylococcus aureus |
CjCas9[ | 108 | 5′-N4RYAC-3′ | 22 | Y | 35 | Y | N | Campylobacter jejuni |
mini-SaCas9[ | 100 | 5′-NNGRRT-3′ | 20 | N | 24 | N | N | Staphylococcus aureus |
Nme2Cas9[ | 160 | 5′-N4CC-3′ | 22-24 | Y | 24 | Y | N | Neisseria meningitidis |
SauriCas9[ | 118 | 5′-NNGG-3′ | 20 | Y | 36 | Y | N | Staphylococcus auricularis |
BlatCas9[ | 120 | 5′-N4CNAA-3′ | 17-24 | Y | 24 | Y | N | HEK9T |
MISER Cas9[ | 100 | 5′-NNRGAA-3′ | 42 | Y | 36 | N | N | Streptococcus pyogenes |
SchCas9[ | 115 | 5′-NNGR-3′ | 21 | Y | 32 | Y | N | / |
Nsp2Cas9[ | 117 | 5′-N4C-3′ | 22-26 | N | 23 | Y | N | / |
IscB[ | 54 | 5′-NWRRNA-3′ | 20 | Y | 206 | Y | N | / |
蛋白 | 分子量(kDa) | PAM | spacer(nt) | tracrRNA(nt) | 直接重复序列(DR) | 切割dsDNA | 切割ssDNA | 实验细胞/细菌 |
---|---|---|---|---|---|---|---|---|
Cas12d(CasY)[ | 132 | 5′-TA-3′ | 17 | Y | 26 | Y | - | uncultivated microbes |
Cas12e5(CasX)[ | 108 | 5′-TTCN-3′ | 20 | Y | 23 | Y | - | uncultivated microbes |
FnCpf1(Cas12a)[ | 147 | 5′--KYTV-3′ | 20 | NA | 14 | Y | Y | / |
AaCas12b(C2c1)[ | 125 | 5′-TTN-3′ | 20 | Y | 37 | Y | Y | Alicyclobacillus acidiphilus |
Cas12c(C2c3)[ | 133.09-146.3 | 5′-TG-3′或5′-TN-3′ | 17-18 | Y | 17 | Y | Y | HEK293T |
Cas12g[ | 79.2- 91.3 | 5′-NA-3′ | 30 | Y | 36 | N | Y | HEK293T |
Cas12h[ | 95.7- 101.64 | 5′-RTR-3′ | - | N | - | Y | Y | HEK293T |
Cas12i[ | 113- 120 | 5′-TTN-3′ | 28 | N | 24 | Y | Y | HEK293T |
Cas12j[ | 70-80 | 5′-TBN-3′或5′-TTN-3′ | 14-20 | N | 26 | Y | Y | HEK293T |
CasMINI[ | 58 | 5′-TTTR-3′ | 23 | Y | 26 | Y | Y | TRE3G-GFP HEK293T |
UnCas12f[ | 44-77 | 5′-TTTA-3′ | 34-39 | Y | 37 | Y | Y | / |
表3 Cas12的小型化研究
Table 3 Miniaturization studies of Cas12
蛋白 | 分子量(kDa) | PAM | spacer(nt) | tracrRNA(nt) | 直接重复序列(DR) | 切割dsDNA | 切割ssDNA | 实验细胞/细菌 |
---|---|---|---|---|---|---|---|---|
Cas12d(CasY)[ | 132 | 5′-TA-3′ | 17 | Y | 26 | Y | - | uncultivated microbes |
Cas12e5(CasX)[ | 108 | 5′-TTCN-3′ | 20 | Y | 23 | Y | - | uncultivated microbes |
FnCpf1(Cas12a)[ | 147 | 5′--KYTV-3′ | 20 | NA | 14 | Y | Y | / |
AaCas12b(C2c1)[ | 125 | 5′-TTN-3′ | 20 | Y | 37 | Y | Y | Alicyclobacillus acidiphilus |
Cas12c(C2c3)[ | 133.09-146.3 | 5′-TG-3′或5′-TN-3′ | 17-18 | Y | 17 | Y | Y | HEK293T |
Cas12g[ | 79.2- 91.3 | 5′-NA-3′ | 30 | Y | 36 | N | Y | HEK293T |
Cas12h[ | 95.7- 101.64 | 5′-RTR-3′ | - | N | - | Y | Y | HEK293T |
Cas12i[ | 113- 120 | 5′-TTN-3′ | 28 | N | 24 | Y | Y | HEK293T |
Cas12j[ | 70-80 | 5′-TBN-3′或5′-TTN-3′ | 14-20 | N | 26 | Y | Y | HEK293T |
CasMINI[ | 58 | 5′-TTTR-3′ | 23 | Y | 26 | Y | Y | TRE3G-GFP HEK293T |
UnCas12f[ | 44-77 | 5′-TTTA-3′ | 34-39 | Y | 37 | Y | Y | / |
蛋白 | 分子量(kDa) | PFS | spacer(nt) | tracrRNA(nt) | 直接重复序列(DR) | ssRNA | 实验细胞/细菌 |
---|---|---|---|---|---|---|---|
Cas13a(C2c2)[ | 138 | 3′-AT /C | 14-18 | N | 28 | Y | / |
Cas13b(C2c6)[ | 128 | 5′-D和3′-NAN/NNA | 30 | Y | 36 | Y | / |
Cas13c(C2c7)[ | 123 | 3′-U | 30 | N | 36 | Y | / |
Cas13d[ | 102 | N/A | 30 | N | 36 | Y | Ruminococcus flavefaciens FD-1 |
Cas13Rx(RfxCas13d)[ | 106 | N/A | 30 | N | 22 | Y | Ruminococcus flavefaciens FD-1 |
Cas13X.1[ | 85 | N/A | 30 | N | 36 | Y | HEK293T |
Cas13Y.1[ | 85 | N/A | 30 | N | 36 | Y | HEK293T |
Cas13bt[ | 85-88 | 5ʹ-D | 30 | N | 30 | Y | HEK293T |
Cas13e3[ | 84 | N/A | 27 | N | 30 | Y | / |
表4 Cas13的小型化研究
Table 4 Miniaturization studies of Cas13
蛋白 | 分子量(kDa) | PFS | spacer(nt) | tracrRNA(nt) | 直接重复序列(DR) | ssRNA | 实验细胞/细菌 |
---|---|---|---|---|---|---|---|
Cas13a(C2c2)[ | 138 | 3′-AT /C | 14-18 | N | 28 | Y | / |
Cas13b(C2c6)[ | 128 | 5′-D和3′-NAN/NNA | 30 | Y | 36 | Y | / |
Cas13c(C2c7)[ | 123 | 3′-U | 30 | N | 36 | Y | / |
Cas13d[ | 102 | N/A | 30 | N | 36 | Y | Ruminococcus flavefaciens FD-1 |
Cas13Rx(RfxCas13d)[ | 106 | N/A | 30 | N | 22 | Y | Ruminococcus flavefaciens FD-1 |
Cas13X.1[ | 85 | N/A | 30 | N | 36 | Y | HEK293T |
Cas13Y.1[ | 85 | N/A | 30 | N | 36 | Y | HEK293T |
Cas13bt[ | 85-88 | 5ʹ-D | 30 | N | 30 | Y | HEK293T |
Cas13e3[ | 84 | N/A | 27 | N | 30 | Y | / |
1 | MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18(2): 67-83. |
2 | MAKAROVA K S, KOONIN E V. Annotation and classification of CRISPR-cas systems[J]. Methods in Molecular Biology, 2015, 1311: 47-75. |
3 | LI J H, TANG L N, LI T X, et al. Tandem Cas13a/crRNA-mediated CRISPR-FET biosensor: a one-for-all check station for virus without amplification[J]. ACS Sensors, 2022, 7(9): 2680-2690. |
4 | GUPTA D, BHATTACHARJEE O, MANDAL D, et al. CRISPR-Cas9 system: a new-fangled dawn in gene editing[J]. Life Sciences, 2019, 232: 116636. |
5 | DOETSCHMAN T, GEORGIEVA T. Gene editing with CRISPR/Cas9 RNA-directed nuclease[J]. Circulation Research, 2017, 120(5): 876-894. |
6 | SAFARI F, AFARID M, RASTEGARI B, et al. CRISPR systems: novel approaches for detection and combating COVID-19[J]. Virus Research, 2021, 294: 198282. |
7 | RAMACHANDRAN A, SANTIAGO J G. CRISPR enzyme kinetics for molecular diagnostics[J]. Analytical Chemistry, 2021, 93(20): 7456-7464. |
8 | FRANGOUL H, ALTSHULER D, CAPPELLINI M D, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia[J]. New England Journal of Medicine, 2021, 384(3): 252-260. |
9 | FASCHING C L, SERVELLITA V, MCKAY B, et al. COVID-19 variant detection with a high-fidelity CRISPR-Cas12 enzyme[J]. Journal of Clinical Microbiology, 2022, 60(7): e00261-22. |
10 | GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442. |
11 | CHEW W L, TABEBORDBAR M, CHENG J K W, et al. A multifunctional AAV-CRISPR-Cas9 and its host response[J]. Nature Methods, 2016, 13(10): 868-874. |
12 | MINGOZZI F, HIGH K A. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges[J]. Nature Reviews Genetics, 2011, 12(5): 341-355. |
13 | ZINCARELLI C, SOLTYS S, RENGO G, et al. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection[J]. Molecular Therapy, 2008, 16(6): 1073-1080. |
14 | KOCH L. CRISPR systems go mini[J]. Nature Reviews Genetics, 2021, 22(11): 690. |
15 | SHEN B, ZHANG W S, ZHANG J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects[J]. Nature Methods, 2014, 11(4): 399-402. |
16 | CHEN S A, LEE B, LEE A Y F, et al. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes[J]. Journal of Biological Chemistry, 2016, 291(28): 14457-14467. |
17 | NIOLA F, DAGNÆS-HANSEN F, FRÖDIN M. In vivo editing of the adult mouse liver using CRISPR/Cas9 and hydrodynamic tail vein injection[J]. Methods in Molecular Biology, 2019, 1961: 329-341. |
18 | MURUGAN K, BABU K, SUNDARESAN R, et al. The revolution continues: newly discovered systems expand the CRISPR-cas toolkit[J]. Molecular Cell, 2017, 68(1): 15-25. |
19 | TSUI T K M, LI H. Structure principles of CRISPR-cas surveillance and effector complexes[J]. Annual Review of Biophysics, 2015, 44: 229-255. |
20 | ANDERS C, NIEWOEHNER O, DUERST A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease[J]. Nature, 2014, 513: 569-573. |
21 | STERNBERG S H, LAFRANCE B, KAPLAN M, et al. Conformational control of DNA target cleavage by CRISPR-Cas9[J]. Nature, 2015, 527: 110-113. |
22 | NISHIMASU H, RAN F A, HSU P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935-949. |
23 | ISHINO Y, KRUPOVIC M, FORTERRE P. History of CRISPR-cas from encounter with a mysterious repeated sequence to genome editing technology[J]. Journal of Bacteriology, 2018, 200(7): e00580-17. |
34 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
38 | HOU Z G, ZHANG Y, PROPSON N E, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15644-15649. |
24 | RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546): 186-191. |
39 | ZHANG S Q, ZHANG Q, HOU X M, et al. Dynamics of Staphylococcus aureus Cas9 in DNA target Association and Dissociation[J]. EMBO Reports, 2020, 21(10): e50184. |
40 | KIM E, KOO T, PARK S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni [J]. Nature Communications, 2017, 8: 14500. |
32 | MA D C, PENG S G, HUANG W R, et al. Rational design of mini-Cas9 for transcriptional activation[J]. ACS Synthetic Biology, 2018, 7(4): 978-985. |
41 | EDRAKI A, MIR A, IBRAHEIM R, et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for InVivo genome editing[J]. Molecular Cell, 2019, 73(4): 714-726.e4. |
25 | HU Z Y, WANG S, ZHANG C D, et al. A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope[J]. PLoS Biology, 2020, 18(3): e3000686. |
26 | GAO N, ZHANG C D, HU Z Y, et al. Characterization of Brevibacillus laterosporus Cas9 (BlatCas9) for mammalian genome editing[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 583164. |
31 | SHAMS A, HIGGINS S A, FELLMANN C, et al. Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules[J]. Nature Communications, 2021, 12(1): 5664. |
27 | WANG S, MAO H L, HOU L H, et al. Compact SchCas9 recognizes the simple NNGR PAM[J]. Advanced Science, 2022, 9(4): e2104789. |
28 | WEI J J, HOU L H, LIU J T, et al. Closely related type II-C Cas9 orthologs recognize diverse PAMs[J]. eLife, 2022, 11: e77825. |
30 | SCHULER G, HU C Y, KE A L. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9[J]. Science, 2022, 376(6600): 1476-1481. |
42 | KATO K, OKAZAKI S, KANNAN S, et al. Structure of the IscB-ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9[J]. Nature Communications, 2022, 13(1): 6719. |
29 | ALTAE-TRAN H, KANNAN S, DEMIRCIOGLU F E, et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases[J]. Science, 2021, 374(6563): 57-65. |
33 | DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607. |
35 | MALI P, YANG L H, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. |
36 | ZHANG Y P, WANG J, WANG Z B, et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae [J]. Nature Communications, 2019, 10(1): 1053. |
37 | MEFFERD A L, KORNEPATI A V R, BOGERD H P, et al. Expression of CRISPR/Cas single guide RNAs using small tRNA promoters[J]. RNA, 2015, 21(9): 1683-1689. |
43 | FONFARA I, RICHTER H, BRATOVIČ M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA[J]. Nature, 2016, 532(7600): 517-521. |
44 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
45 | DONG D, REN K, QIU X L, et al. The crystal structure of Cpf1 in complex with CRISPR RNA[J]. Nature, 2016, 532(7600): 522-526. |
46 | GAO P, YANG H, RAJASHANKAR K R, et al. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition[J]. Cell Research, 2016, 26(8): 901-913. |
63 | BURSTEIN D, HARRINGTON L B, STRUTT S C, et al. New CRISPR-Cas systems from uncultivated microbes[J]. Nature, 2017, 542(7640): 237-241. |
64 | LIU J J, ORLOVA N, OAKES B L, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors[J]. Nature, 2019, 566(7743): 218-223. |
65 | TU M J, LIN L, CHENG Y L, et al. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells[J]. Nucleic Acids Research, 2017, 45(19): 11295-11304. |
66 | TENG F, CUI T T, FENG G H, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 2018, 4: 63. |
47 | YAN W X, HUNNEWELL P, ALFONSE L E, et al. Functionally diverse type V CRISPR-Cas systems[J]. Science, 2019, 363(6422): 88-91. |
67 | HUANG C J, ADLER B A, DOUDNA J A. A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression[J]. Molecular Cell, 2022, 82(11): 2148-2160.e4. |
55 | WANG Y, QI T, LIU J T, et al. A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing[J]. Science Advances, 2023, 9(6): eabo6405. |
68 | PAUSCH P, AL-SHAYEB B, BISOM-RAPP E, et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor[J]. Science, 2020, 369(6501): 333-337. |
61 | XU X S, CHEMPARATHY A, ZENG L P, et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing[J]. Molecular Cell, 2021, 81(20): 4333-4345.e4. |
49 | HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839-842. |
51 | KARVELIS T, BIGELYTE G, YOUNG J K, et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage[J]. Nucleic Acids Research, 2020, 48(9): 5016-5023. |
48 | TAKEDA S N, NAKAGAWA R, OKAZAKI S, et al. Structure of the miniature type V-F CRISPR-Cas effector enzyme[J]. Molecular Cell, 2021, 81(3): 558-570.e3. |
50 | ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844. |
52 | KIM D Y, LEE J M, MOON S B, et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus[J]. Nature Biotechnology, 2022, 40(1): 94-102. |
53 | WU Z W, ZHANG Y F, YU H P, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J]. Nature Chemical Biology, 2021, 17(11): 1132-1138. |
54 | HUANG H X, LV W Q, LI J H, et al. Comparison of DNA targeting CRISPR editors in human cells[J]. Cell & Bioscience, 2023, 13(1): 11. |
56 | KARVELIS T, DRUTEIKA G, BIGELYTE G, et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease[J]. Nature, 2021, 599(7886): 692-696. |
57 | XIANG G H, LI Y Q, SUN J, et al. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors[J/OL]. Nature Biotechnology. (2023-06-29)[2023-09-01]. . |
58 | CHEN W Z, MA J C, WU Z W, et al. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors[J]. Molecular Cell, 2023, 83(15): 2768-2780.e6. |
59 | SHMAKOV S, SMARGON A, SCOTT D, et al. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2017, 15(3): 169-182. |
60 | SASNAUSKAS G, TAMULAITIENE G, DRUTEIKA G, et al. TnpB structure reveals minimal functional core of Cas12 nuclease family[J]. Nature, 2023, 616(7956): 384-389. |
62 | SENTHILNATHAN R, ILANGOVAN I, KUNALE M, et al. An update on CRISPR-Cas12 as a versatile tool in genome editing[J]. Molecular Biology Reports, 2023, 50(3): 2865-2881. |
69 | ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675): 280-284. |
70 | KONERMANN S, LOTFY P, BRIDEAU N J, et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors[J]. Cell, 2018, 173(3): 665-676.e14. |
71 | HU Y P, CHEN Y C, XU J, et al. Metagenomic discovery of novel CRISPR-Cas13 systems[J]. Cell Discovery, 2022, 8(1): 107. |
72 | LIU L, LI X Y, WANG J Y, et al. Two distant catalytic sites are responsible for C2c2 RNase activities[J]. Cell, 2017, 168(1-2): 121-134.e12. |
73 | WU S M, TIAN P F, TAN T W. CRISPR-Cas13 technology portfolio and alliance with other genetic tools[J]. Biotechnology Advances, 2022, 61: 108047. |
80 | SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-cas systems[J]. Molecular Cell, 2015, 60(3): 385-397. |
81 | SMARGON A A, COX D B T, PYZOCHA N K, et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28[J]. Molecular Cell, 2017, 65(4): 618-630.e7. |
82 | YAN W X, CHONG S R, ZHANG H B, et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein[J]. Molecular Cell, 2018, 70(2): 327-339.e5. |
83 | XU C L, ZHOU Y S, XIAO Q Q, et al. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes[J]. Nature Methods, 2021, 18(5): 499-506. |
74 | KANNAN S, ALTAE-TRAN H, JIN X, et al. Compact RNA editors with small Cas13 proteins[J]. Nature Biotechnology, 2022, 40(2): 194-197. |
75 | TANG T, HAN Y L, WANG Y R, et al. Programmable system of Cas13-mediated RNA modification and its biological and biomedical applications[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 677587. |
76 | WANG F, WANG L R, ZOU X, et al. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing[J]. Biotechnology Advances, 2019, 37(5): 708-729. |
77 | ZHAO F Y, ZHANG T, SUN X D, et al. A strategy for Cas13 miniaturization based on the structure and AlphaFold[J]. Nature Communications, 2023, 14(1): 5545. |
78 | BANDARU S, TSUJI M H, SHIMIZU Y, et al. Structure-based design of gRNA for Cas13[J]. Scientific Reports, 2020, 10(1): 11610. |
79 | XIAO Q Q, XU Z J, XUE Y Y, et al. Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor[J]. Science Translational Medicine, 2022, 14(654): eabn0449. |
84 | GAO S Q, WANG Y, QI T, et al. Genome editing with natural and engineered CjCas9 orthologs[J]. Molecular Therapy, 2023, 31(4): 1177-1187. |
85 | ZHOU F X, YU X R, GAN R, et al. CRISPRimmunity: an interactive web server for CRISPR-associated Important Molecular events and Modulators Used in geNome edIting Tool identifYing[J]. Nucleic Acids Research, 2023, 51(W1): W93-W107. |
86 | AWAN M J A, AMIN I, MANSOOR S. Mini CRISPR-Cas12f1: a new genome editing tool[J]. Trends in Plant Science, 2022, 27(2): 110-112. |
87 | CHO E Y, RYU J Y, LEE H A R, et al. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes[J]. Journal of Nanobiotechnology, 2019, 17(1): 19. |
[1] | 杜瑶, 高宏丹, 刘家坤, 刘孝荣, 邢志浩, 张涛, 马东礼. CRISPR-Cas系统在病原核酸检测中的研究进展[J]. 合成生物学, 2024, 5(1): 202-216. |
[2] | 马孟丹, 刘宇辰. 合成生物学在疾病信息记录与实时监测中的应用潜力[J]. 合成生物学, 2023, 4(2): 301-317. |
[3] | 刘倩, 李金根, 张晨阳, 李芳雅, 田朝光. 工业丝状真菌基因组编辑技术研究进展[J]. 合成生物学, 2021, 2(2): 256-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||