• 特约评述 •
收稿日期:
2024-05-20
修回日期:
2024-09-27
出版日期:
2024-09-30
通讯作者:
胡国鹏
作者简介:
基金资助:
Yikun ZHENG1, Jie ZHENG2, Guopeng HU1()
Received:
2024-05-20
Revised:
2024-09-27
Online:
2024-09-30
Contact:
Guopeng HU
摘要:
光遗传学技术是一种结合光学和遗传学的新型细胞生物学工具。通过引入光激活通道(光敏感蛋白基因)到特定的神经元群体,光遗传学能够以毫秒级精度对这些神经元进行非侵入性光学控制。这一技术的进步为研究学习和记忆的神经生物学基础提供了强大支持。通过在活体动物中精确操控神经元活动,研究人员可以更详细地分析神经网络的功能,探索学习和记忆过程中的分子、细胞和神经回路机制。光遗传学不仅揭示了突触可塑性在记忆形成中的关键作用,还通过特定波长的光激活或抑制神经元,实现记忆的生成、消除和恢复。本文综述了光遗传学工具在学习和记忆研究中的应用,包括不同波长光照对受体的影响、光学刺激对记忆的激活和抑制,以及基于光遗传学的神经功能增强研究方法。然而,在光遗传学的应用过程中仍存在一些挑战,例如开发安全且高效的基因传递载体、优化光敏蛋白的性能、探索其在临床环境中转化的可行性等。解决这些问题对于光遗传学技术的进一步发展至关重要。未来,随着光遗传学工具的持续优化和跨学科技术的融合应用,这项技术有望在治疗神经系统疾病、增强认知功能与成瘾研究等领域提供新的理论基础和实践方法。
中图分类号:
郑益坤, 郑婕, 胡国鹏. 光遗传学工具在学习记忆中的应用研究[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-042.
Yikun ZHENG, Jie ZHENG, Guopeng HU. Research on the Application of Optogenetic Tools in Learning and Memory[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-042.
图1 突触连接强化示意图图中展示神经元A、R和B之间的突触连接如何通过重复的电生理刺激得到增强。该过程模拟信息的重复编码机制,并反映了形成长期记忆的基本原理。根据Hebb定律,如果两个神经元频繁且近距离地共同活动,相关突触连接将得到加强,从而提高信息传递的效率并增强突触后的反应能力。
Fig.1 Diagram of Synaptic Connection StrengtheningThe diagram illustrates how synaptic connections between neurons A, R, and B are strengthened through repeated electrophysiological stimulation. This process simulates the mechanism of repeated encoding of information and reflects the fundamental principles of long-term memory formation. According to Hebb's rule, if two neurons frequently and closely act together, the associated synaptic connections will be strengthened, thereby improving the efficiency of information transmission and enhancing the postsynaptic response.
图2 通过Hebb法则增强特定神经元突触连接Hebb法则在突触可塑性中的应用表明,反复激活特定神经元可以增强突触连接,这一机制是学习和记忆形成过程中的基础组成部分。
Fig.2 Specific neuronal synaptic connections enhanced by Hebbian ruleThe application of Hebb's rule in synaptic plasticity indicates that repeated activation of specific neurons can enhance synaptic connections, a mechanism that is a fundamental component in the processes of learning and memory formation.
图3 信号分隔与整合传递处理架构(a) 偏向输入—分隔输出架构,其中不同的输入信号(不同粗细的箭头表示不同的输入强度)被分隔处理并传递到不同的输出目标。(b) 整合和传递架构,所有输入信号在中间层进行整合处理并传递到多个目标神经元群体[32]。
Fig.3 Signal segregation and integration transmission processing architecture(a) Input-biased—separated output architecture, in which different input signals (represented by arrows of varying thickness indicating different input strengths) are processed separately and transmitted to different output targets. (b) Integration and transmission architecture, where all input signals are integrated at an intermediate layer and transmitted to multiple target neuronal groups[32].
图4 光遗传学工具及其作用机制(a)光遗传学工具包含不同光遗传效应器和传感器在不同波长光谱下的分布。去极化效应器(Depolarizing)包括CheRiff, BLINK-1, ChR2, PAC-K,作用波长从蓝光到绿光。超极化效应器(Hyperpolarizing)包括GtACR1, Arch, NpHR, ArchT, Halo, ReaChR, Crimson, Jaws,作用波长从绿光到红光。光遗传传感器(Optogenetic Sensors)包括电压传感器(GEVI, VSFP2.3, ArcLight, ASAP, Voltron525, FlicR1)和钙离子传感器(GECI, GCaMPs, R-CaMPs, R-GECOs, Quasars, Archon1, NIR-Butterfly, NIR-GECO)[40]。(b)三种主要光遗传工具的激发光谱:ChR2(蓝色,最大激发波长约为470 nm),NpHR(橙色,最大激发波长约为589 nm),Arch(绿色,最大激发波长约为575 nm)。(c)光谱作用下具体的激活和抑制离子通道:在蓝光下,ChR2通道开启,钾离子(K+)进入细胞,同时钠离子(Na+)和钙离子(Ca2+)也通过其他通道(如CheTA, SFO, VChR1)进入细胞,使神经元去极化。在黄光或黄绿色光下,NpHR通道开启,氯离子(Cl-)进入细胞,使神经元超极化;Arch通道开启,质子(H+)被泵出细胞,使神经元超极化。其他抑制通道如Mac, eNpHR2.0, eBR, eNpHR3.0, GtR3也通过类似机制抑制神经元活动。(d)激活和抑制通道对神经元电压的具体影响:激活通道在蓝光激活后,神经元膜电位从-70 mV上升;抑制通道在黄光或黄绿色光激活后,神经元膜电位从-70 mV下降[42]。
Fig.4 Optogenetic tools and their mechanisms of action(a) The optogenetic toolkit includes the distribution of different optogenetic actuators and sensors across various wavelengths. Depolarizing actuators include CheRiff, BLINK-1, ChR2, PAC-K, with wavelengths ranging from blue to green light. Hyperpolarizing actuators include GtACR1, Arch, NpHR, ArchT, Halo, ReaChR, Crimson, Jaws, with wavelengths ranging from green to red light. Optogenetic sensors include voltage sensors (GEVI, VSFP2.3, ArcLight, ASAP, Voltron525, FlicR1) and calcium sensors (GECI, GCaMPs, R-CaMPs, R-GECOs, Quasars, Archon1, NIR-Butterfly, NIR-GECO)[40]. (b) Excitation spectra of three main optogenetic tools: ChR2 (blue, maximum excitation wavelength approximately 470 nm), NpHR (orange, maximum excitation wavelength approximately 589 nm), Arch (green, maximum excitation wavelength approximately 575 nm). (c) Specific activation and inhibition ion channels under different spectra: In blue light, ChR2 channels open, allowing potassium ions (K+) to enter the cell, along with sodium ions (Na+) and calcium ions (Ca2+) through other channels such as CheTA, SFO, and VChR1, leading to neuronal depolarization. Under yellow or yellow-green light, NpHR channels open, allowing chloride ions (Cl-) to enter the cell, causing neuronal hyperpolarization; Arch channels open, pumping protons (H+) out of the cell, also causing hyperpolarization. Other inhibition channels such as Mac, eNpHR2.0, eBR, eNpHR3.0, GtR3 inhibit neuronal activity through similar mechanisms. (d) Specific effects of activation and inhibition channels on neuronal voltage: Activation channels, when activated by blue light, cause the neuronal membrane potential to rise from -70 mV; inhibition channels, when activated by yellow or yellow-green light, cause the membrane potential to drop from -70 mV [42].
图5 人工插入记忆与实际记忆由相同神经环路编码(a)实验设计图示:小鼠在两种不同记忆形成条件下的训练模式。真实记忆组使用传统的气味(苯乙酮)与足部电击配对(CS + US),单独使用苯乙酮(仅CS)。人工记忆组则使用M72光刺激与LHb-VTA投射的光刺激配对(CS + US),单独M72光刺激(仅CS)。(b) 神经回路激活图:通过两种训练模式来展示大脑中的活动区域。表明不同方式的训练,激活了相似的神经回路。(c) 大脑结构活动示意:在中枢嗅觉系统和与联想记忆相关的区域,1天后分析CS诱导的Fos表达。展示记忆形成过程中大脑结构的活动变化。(d) & (e) Fos表达量的对比分析图:分别对真实记忆和人工记忆下CS和CS+US条件的Fos表达进行了量化。展示在不同记忆训练后,大脑区域内Fos表达的增强。(f) & (h) Fos诱导的详细观察:在真实和人工记忆形成的小鼠中,基底外侧杏仁核(BLA)中的Fos表达显著增强。这种增强反映特定记忆形成的学习特异性激活。(g) & (i) 矢状切片图:在不同条件下的Fos诱导情况。白色区域代表Fos的表达,这些图像进一步证实了BLA区域在学习和记忆形成中的关键作用(图像来源自参考文献114)[114]。
Fig.5 Artificially inserted memories and actual memories are encoded by the same neural circuitry(a)Experimental design illustration: Mice training patterns under two different memory formation conditions. The real memory group uses a traditional pairing of odor (acetophenone) and foot shock (CS + US), and acetophenone alone (CS only). The artificial memory group uses M72 light stimulation paired with LHb-VTA projection light stimulation (CS + US), and M72 light stimulation alone (CS only).(b) Neural circuit activation diagram: Shows the brain regions activated by the two training modalities, indicating similar neural circuits are activated by different training methods.(c) Brain structure activity schematic: Analyzes CS-induced Fos expression in the central olfactory system and regions associated with associative memory one day later. Demonstrates the changes in brain structure activity during the memory formation process.(d) & (e) Comparative analysis of Fos expression: Quantifies Fos expression under true memory and artificial memory for both CS and CS+US conditions. Shows enhancement of Fos expression in brain regions after different memory trainings. (f) & (h) Detailed observation of Fos induction: Significant enhancement of Fos expression in the basolateral amygdala (BLA) in mice with real and artificial memory formation. This enhancement reflects the learning-specific activation associated with specific memory formation.(g) & (i) Sagittal section diagrams: Displays Fos induction under different conditions. The white areas represent the expression of Fos, further confirming the critical role of the BLA region in learning and memory formation (The image is sourced from reference 114) [114].
1 | ZHANG F, WANG L-P, BRAUNER M, et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 2007, 446(7136): 633–639. |
2 | DEISSEROTH K. Optogenetics[J]. Nature Methods, 2011, 8(1): 26–29. |
3 | BOYDEN E S, ZHANG F, BAMBERG E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 2005, 8(9): 1263–1268. |
4 | BAMBERG E, TITTOR J, OESTERHELT D. Light-driven proton or chloride pumping by halorhodopsin.[J]. Proceedings of the National Academy of Sciences, 1993, 90(2): 639–643. |
5 | MIESENBÖCK G, DE ANGELIS D A, ROTHMAN J E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins[J]. Nature, 1998, 394(6689): 192–195. |
6 | NAGEL G, OLLIG D, FUHRMANN M, et al. Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae[J]. Science, 2002, 296(5577): 2395–2398. |
7 | NAGEL G, SZELLAS T, HUHN W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proceedings of the National Academy of Sciences, 2003, 100(24): 13940–13945. |
8 | BI A, CUI J, MA Y-P, et al. Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration[J]. Neuron, 2006, 50(1): 23–33. |
9 | YANG Y, WU M, WEGENER A J, et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience[J]. Nature Protocols, 2022, 17(4): 1073–1096. |
10 | SRIDHARAN S, GAJOWA M A, OGANDO M B, et al. High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks[J]. Neuron, 2022, 110(7): 1139-1155.e6. |
11 | YIZHAR O, FENNO L E, DAVIDSON T J, et al. Optogenetics in Neural Systems[J]. Neuron, 2011, 71(1): 9–34. |
12 | GRADINARU V, ZHANG F, RAMAKRISHNAN C, et al. Molecular and Cellular Approaches for Diversifying and Extending Optogenetics[J]. Cell, 2010, 141(1): 154–165. |
13 | ZHAO S, TING J T, ATALLAH H E, et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function[J]. Nature Methods, 2011, 8(9): 745–752. |
14 | HONG W, JIANG C, QIN M, et al. Self-adaptive cardiac optogenetics device based on negative stretching-resistive strain sensor[J]. Science Advances, 2021, 7(48): eabj4273. |
15 | FENNO L E, MATTIS J, RAMAKRISHNAN C, et al. Targeting cells with single vectors using multiple-feature Boolean logic[J]. Nature Methods, 2014, 11(7): 763–772. |
16 | SHEMESH O A, TANESE D, ZAMPINI V, et al. Temporally precise single-cell-resolution optogenetics[J]. Nature Neuroscience, 2017, 20(12): 1796–1806. |
17 | LIEWALD J F, BRAUNER M, STEPHENS G J, et al. Optogenetic analysis of synaptic function[J]. Nature Methods, 2008, 5(10): 895-902. |
18 | EHMANN N, PAULS D. Optogenetics: Illuminating neuronal circuits of memory formation[J]. Journal of Neurogenetics, 2020, 34(1): 47-54. |
19 | CHEN W, LI C, LIANG W, et al. The Roles of Optogenetics and Technology in Neurobiology: A Review[J]. Frontiers in Aging Neuroscience, 2022, 14: 867863. |
20 | SINNEN B L, BOWEN A B, FORTE J S, et al. Optogenetic Control of Synaptic Composition and Function[J]. Neuron, 2017, 93(3): 646-660.e5. |
21 | BÄUML K-H T, TRIßL L. Selective memory retrieval can revive forgotten memories[J]. Proceedings of the National Academy of Sciences, 2022, 119(8): e2114377119. |
22 | CHANALES A J H, DUDUKOVIC N M, RICHTER F R, et al. Interference between overlapping memories is predicted by neural states during learning[J]. Nature Communications, 2019, 10(1): 5363. |
23 | COWAN N. Short-term memory based on activated long-term memory: A review in response to Norris (2017).[J]. Psychological Bulletin, 2019, 145(8): 822–847. |
24 | DAHAL P, RAUHALA O J, KHODAGHOLY D, et al. Hippocampal–cortical coupling differentiates long-term memory processes[J]. Proceedings of the National Academy of Sciences, 2023, 120(7): e2207909120. |
25 | BERDUGO-VEGA G, ARIAS-GIL G, LÓPEZ-FERNÁNDEZ A, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life[J]. Nature Communications, 2020, 11(1): 135. |
26 | FISHER S D, ROBERTSON P B, BLACK M J, et al. Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo[J]. Nature Communications, 2017, 8(1): 334. |
27 | HONORÉ E, KHLAIFIA A, BOSSON A, et al. Hippocampal Somatostatin Interneurons, Long-Term Synaptic Plasticity and Memory[J]. Frontiers in Neural Circuits, 2021, 15: 687558. |
28 | GERSTNER W. Biological Learning: Synaptic Plasticity, Hebb Rule and Spike TimingDependent Plasticity[A]. 见: C. Sammut, G.I. Webb. Encyclopedia of Machine Learning[M]. Boston, MA: Springer US, 2011: 111-132. |
29 | CARONI P, DONATO F, MULLER D. Structural plasticity upon learning: regulation and functions[J]. Nature Reviews Neuroscience, 2012, 13(7): 478-490. |
30 | YANG Y, CALAKOS N. Presynaptic long-term plasticity[J]. Frontiers in Synaptic Neuroscience, 2013, 5. |
31 | BAILEY C H, KANDEL E R, HARRIS K M. Structural Components of Synaptic Plasticity and Memory Consolidation[J]. Cold Spring Harbor Perspectives in Biology, 2015, 7(7): a021758. |
32 | LUO L. Architectures of neuronal circuits[J]. Science, 2021, 373(6559): eabg7285. |
33 | KIM C Y, KU M J, QAZI R, et al. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics[J]. Nature Communications, 2021, 12(1): 535. |
34 | BECK S, YU-STRZELCZYK J, PAULS D, et al. Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition[J]. Frontiers in Neuroscience, 2018, 12: 643. |
35 | ADAMANTIDIS A, ARBER S, BAINS J S, et al. Optogenetics: 10 years after ChR2 in neurons—views from the community[J]. Nature Neuroscience, 2015, 18(9): 1202–1212. |
36 | MAJUMDER R, FEOLA I, TEPLENIN A S, et al. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system[J]. eLife, 2018, 7: e41076. |
37 | HONJO K, HWANG R Y, TRACEY W D. Optogenetic manipulation of neural circuits and behavior in Drosophila larvae[J]. Nature Protocols, 2012, 7(8): 1470–1478. |
38 | LIN J Y, KNUTSEN P M, MULLER A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation[J]. Nature Neuroscience, 2013, 16(10): 1499–1508. |
39 | CHENG M Y, WANG E H, WOODSON W J, et al. Optogenetic neuronal stimulation promotes functional recovery after stroke[J]. Proceedings of the National Academy of Sciences, 2014, 111(35): 12913-12918. |
40 | ENTCHEVA E, KAY M W. Cardiac optogenetics: a decade of enlightenment[J]. Nature Reviews Cardiology, 2021, 18(5): 349-367. |
41 | HUANG S, DING M, ROELFSEMA M R G, et al. Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel Gt ACR1[J]. Science Advances, 2021, 7(28): eabg4619. |
42 | PASTRANA E. Optogenetics: controlling cell function with light[J]. Nature Methods, 2011, 8(1): 24-25. |
43 | CHENG M Y, ASWENDT M, STEINBERG G K. Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery[J]. Neurotherapeutics, 2016, 13(2): 325-340. |
44 | JOSHI J, RUBART M, ZHU W. Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine[J]. Frontiers in Bioengineering and Biotechnology, 2020, 7: 466. |
45 | IYER S M, DELP S L. Optogenetic Regeneration[J]. Science, 2014, 344(6179): 44-45. |
46 | RONZITTI E, CONTI R, ZAMPINI V, et al. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos[J]. The Journal of Neuroscience, 2017, 37(44): 10679-10689. |
47 | BANSAL H, PYARI G, ROY S. Optogenetic Generation of Neural Firing Patterns with Temporal Shaping of Light Pulses[J]. Photonics, 2023, 10(5): 571. |
48 | MIRZAYI P, SHOBEIRI P, KALANTARI A, et al. Optogenetics: implications for Alzheimer's disease research and therapy[J]. Molecular Brain, 2022, 15(1): 20. |
49 | KOL A, ADAMSKY A, GROYSMAN M, et al. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning[J]. Nature Neuroscience, 2020, 23(10): 1229–1239. |
50 | MANSOURI A, TASLIMI S, BADHIWALA J H, et al. Deep brain stimulation for Parkinson's disease: meta-analysis of results of randomized trials at varying lengths of follow-up[J]. Journal of Neurosurgery, 2018, 128(4): 1199-1213. |
51 | HUANG W A, STITT I M, NEGAHBANI E, et al. Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform[J]. Nature Communications, 2021, 12(1): 3151. |
52 | CHEN P-Y, J-R CHEEN, Y-C JHENG, et al. Clinical applications and consideration of interventions of electrotherapy for orthopedic and neurological rehabilitation[J]. Journal of the Chinese Medical Association, 2022, 85(1): 24-29. |
53 | YANG Q, SONG D, XIE Z, et al. Optogenetic stimulation of CA3 pyramidal neurons restores synaptic deficits to improve spatial short-term memory in APP/PS1 mice[J]. Progress in Neurobiology, 2022, 209: 102209. |
54 | DENG W, WU G, MIN L, et al. Optogenetic Neuronal Stimulation Promotes Functional Recovery After Spinal Cord Injury[J]. Frontiers in Neuroscience, 2021, 15: 640255. |
55 | LU C, WU X, MA H, et al. Optogenetic Stimulation Enhanced Neuronal Plasticities in Motor Recovery after Ischemic Stroke[J]. Neural Plasticity, 2019, 2019: 1-9. |
56 | PATEL M, LI Y, ANDERSON J, et al. Gsx1 promotes locomotor functional recovery after spinal cord injury[J]. Molecular Therapy, 2021, 29(8): 2469–2482. |
57 | OSAKI T, UZEL S G M, KAMM R D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons[J]. Science Advances, 2018, 4(10): eaat5847. |
58 | KOBLINGER K, JEAN-XAVIER C, SHARMA S, et al. Optogenetic Activation of A11 Region Increases Motor Activity[J]. Frontiers in Neural Circuits, 2018, 12: 86. |
59 | WATANABE H, SANO H, CHIKEN S, et al. Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex[J]. Nature Communications, 2020, 11(1): 3253. |
60 | CONTI E, SCAGLIONE A, DE VITO G, et al. Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity[J]. Neurorehabilitation and Neural Repair, 2022, 36(2): 107–118. |
61 | TAN J K, NAZAR F H, MAKPOL S, et al. Zebrafish: A Pharmacological Model for Learning and Memory Research[J]. Molecules, 2022, 27(21): 7374. |
62 | FRANKLAND P W, JOSSELYN S A, KÖHLER S. The neurobiological foundation of memory retrieval[J]. Nature Neuroscience, 2019, 22(10): 1576-1585. |
63 | TANG L, PRUITT P J, YU Q, et al. Differential Functional Connectivity in Anterior and Posterior Hippocampus Supporting the Development of Memory Formation[J]. Frontiers in Human Neuroscience, 2020, 14: 204. |
64 | DRISKILL C M, CHILDS J E, ITMER B, et al. Acute Vagus Nerve Stimulation Facilitates Short Term Memory and Cognitive Flexibility in Rats[J]. Brain Sciences, 2022, 12(9): 1137. |
65 | NABAVI S, FOX R, PROULX C D, et al. Engineering a memory with LTD and LTP[J]. Nature, 2014, 511(7509): 348-352. |
66 | YAMAMOTO N, MARKS W D, KITAMURA T. Cell-Type-Specific Optogenetic Techniques Reveal Neural Circuits Crucial for Episodic Memories[A]. 见: H. Yawo, H. Kandori, A. Koizumi,et al. Optogenetics[M]. Singapore: Springer Singapore, 2021, 1293: 429–447. |
67 | WANG Y, WANG K, HU X, et al. Optogenetics-Inspired Fluorescent Synaptic Devices with Nonvolatility[J]. ACS Nano, 2023, 17(4): 3696-3704. |
68 | KLOC M L, VELASQUEZ F, NIEDECKER R W, et al. Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition[J]. Brain Stimulation, 2020, 13(6): 1535-1547. |
69 | LEBLANC H, RAMIREZ S. Linking Social Cognition to Learning and Memory[J]. The Journal of Neuroscience, 2020, 40(46): 8782–8798. |
70 | NAGASAWA Y, UEDA H H, KAWABATA H, et al. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics[J]. Biophysics and Physicobiology, 2023, 20(2): n/a. |
71 | BHATTACHARYYA M, KARANDUR D, KURIYAN J. Structural Insights into the Regulation of Ca 2+ /Calmodulin-Dependent Protein Kinase II (CaMKII)[J]. Cold Spring Harbor Perspectives in Biology, 2020, 12(6): a035147. |
72 | ROSTAS J A P, SKELDING K A. Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment[J]. Cells, 2023, 12(3): 401. |
73 | ZHANG X, CONNELLY J, LEVITAN E S, et al. Calcium/Calmodulin–Dependent Protein Kinase II in Cerebrovascular Diseases[J]. Translational Stroke Research, 2021, 12(4): 513-529. |
74 | PEREDA D, AL‐OSTA I, OKOROCHA A E, et al. Changes in presynaptic calcium signalling accompany age‐related deficits in hippocampal LTP and cognitive impairment[J]. Aging Cell, 2019, 18(5): e13008. |
75 | YASUDA R, HAYASHI Y, HELL J W. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory[J]. Nature Reviews Neuroscience, 2022, 23(11): 666–682. |
76 | WIDEMAN C E, HUFF A E, MESSER W S, et al. Muscarinic receptor activation overrides boundary conditions on memory updating in a calcium/calmodulin-dependent manner[J]. Neuropsychopharmacology, 2023, 48(9): 1358–1366. |
77 | GOTO A, BOTA A, MIYA K, et al. Stepwise synaptic plasticity events drive the early phase of memory consolidation[J]. Science, 2021, 374(6569): 857–863. |
78 | ROBINSON N T M, DESCAMPS L A L, RUSSELL L E, et al. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior[J]. Cell, 2020, 183(6): 1586-1599.e10. |
79 | CALÌ T, BRINI M, CARAFOLI E. Regulation of Cell Calcium and Role of Plasma Membrane Calcium ATPases[A]. 见: International Review of Cell and Molecular Biology[M]. Elsevier, 2017, 332: 259–296. |
80 | HOLAHAN M R, TZAKIS N, OLIVEIRA F A. Developmental Aspects of Glucose and Calcium Availability on the Persistence of Memory Function Over the Lifespan[J]. Frontiers in Aging Neuroscience, 2019, 11: 253. |
81 | VIGIL F A, GIESE K P. Calcium/calmodulin‐dependent kinase II and memory destabilization: a new role in memory maintenance[J]. Journal of Neurochemistry, 2018, 147(1): 12-23. |
82 | KOOK Y H, LEE H, LEE J, et al. AAV-compatible optogenetic tools for activating endogenous calcium channels in vivo[J]. Molecular Brain, 2023, 16(1): 73. |
83 | WILLETT R T, BAYIN N S, LEE A S, et al. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth[J]. eLife, 2019, 8: e50617. |
84 | SZABO A, SOMOGYI J, CAULI B, et al. Calcium-Permeable AMPA Receptors Provide a Common Mechanism for LTP in Glutamatergic Synapses of Distinct Hippocampal Interneuron Types[J]. The Journal of Neuroscience, 2012, 32(19): 6511–6516. |
85 | ORJATSALO M, ALAKUIJALA A, PARTINEN M. Heart Rate Variability in Head-Up Tilt Tests in Adolescent Postural Tachycardia Syndrome Patients[J]. Frontiers in Neuroscience, 2020, 14: 725. |
86 | KYUNG T, LEE S, KIM J E, et al. Optogenetic control of endogenous Ca2+ channels in vivo[J]. Nature Biotechnology, 2015, 33(10): 1092–1096. |
87 | DELABY C, ALCOLEA D, CARMONA-IRAGUI M, et al. Differential levels of Neurofilament Light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders[J]. Scientific Reports, 2020, 10(1): 9161. |
88 | SEIDENTHAL M, JÁNOSI B, ROSENKRANZ N, et al. pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity[J]. Frontiers in Cellular Neuroscience, 2023, 17: 1120651. |
89 | REDONDO R L, KIM J, ARONS A L, et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram[J]. Nature, 2014, 513(7518): 426–430. |
90 | TONEGAWA S, PIGNATELLI M, ROY D S, et al. Memory engram storage and retrieval[J]. Current Opinion in Neurobiology, 2015, 35: 101–109. |
91 | ROY D S, ARONS A, MITCHELL T I, et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease[J]. Nature, 2016, 531(7595): 508–512. |
92 | HAJJO R, SABBAH D A, ABUSARA O H, et al. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics[J]. Diagnostics, 2022, 12(12): 2975. |
93 | ABUBAKAR M B, SANUSI K O, UGUSMAN A, et al. Alzheimer's Disease: An Update and Insights Into Pathophysiology[J]. Frontiers in Aging Neuroscience, 2022, 14: 742408. |
94 | ROY D S, Y-G PARK, KIM M E, et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions[J]. Nature Communications, 2022, 13(1): 1799. |
95 | ROY D S, KITAMURA T, OKUYAMA T, et al. Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories[J]. Cell, 2017, 170(5): 1000-1012.e19. |
96 | KIM S, KIM N, LEE J, et al. Dynamic Fas signaling network regulates neural stem cell proliferation and memory enhancement[J]. Science Advances, 2020, 6(17): eaaz9691. |
97 | MCNALLY G P, JEAN-RICHARD-DIT-BRESSEL P, MILLAN E Z, et al. Pathways to the persistence of drug use despite its adverse consequences[J]. Molecular Psychiatry, 2023, 28(6): 2228–2237. |
98 | TOZER L. Massive genetic study finds genes linked to cannabis addiction[J]. Nature, 2023: d41586-023-03629–8. |
99 | LEVEY D F, GALIMBERTI M, DEAK J D, et al. Multi-ancestry genome-wide association study of cannabis use disorder yields insight into disease biology and public health implications[J]. Nature Genetics, 2023, 55(12): 2094–2103. |
100 | LI M D, BURMEISTER M. New insights into the genetics of addiction[J]. Nature Reviews Genetics, 2009, 10(4): 225–231. |
101 | ISABELLA A J, LEYVA-DÍAZ E, KANEKO T, et al. The field of neurogenetics: where it stands and where it is going[J]. Genetics, 2021, 218(4): iyab085. |
102 | CAO Z F H, BURDAKOV D, SARNYAI Z. Optogenetics: potentials for addiction research[J]. Addiction Biology, 2011, 16(4): 519–531. |
103 | PASCOLI V, TERRIER J, HIVER A, et al. Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction[J]. Neuron, 2015, 88(5): 1054–1066. |
104 | RICH M T, HUANG Y H, TORREGROSSA M M. Plasticity at Thalamo-amygdala Synapses Regulates Cocaine-Cue Memory Formation and Extinction[J]. Cell Reports, 2019, 26(4): 1010-1020.e5. |
105 | RICH M T, HUANG Y H, TORREGROSSA M M. Using Optogenetics to Reverse Neuroplasticity and Inhibit Cocaine Seeking in Rats[J]. Journal of Visualized Experiments, 2021(176): 63185. |
106 | VICKSTROM C R, SNARRENBERG S T, FRIEDMAN V, et al. Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction[J]. Molecular Psychiatry, 2022, 27(1): 640–651. |
107 | TYREE S M, JENNINGS K J, GONZALEZ O C, et al. Optogenetic and pharmacological interventions link hypocretin neurons to impulsivity in mice[J]. Communications Biology, 2023, 6(1): 74. |
108 | ADAMCZYK A K, ZAWADZKI P. The Memory-Modifying Potential of Optogenetics and the Need for Neuroethics[J]. NanoEthics, 2020, 14(3): 207–225. |
109 | MONTANEZ‐MIRANDA C, BRAMLETT S N, HEPLER J R. RGS14 expression in CA2 hippocampus, amygdala, and basal ganglia: Implications for human brain physiology and disease[J]. Hippocampus, 2023, 33(3): 166–181. |
110 | KIM H K, GSCHWIND T, NGUYEN T M, et al. Optogenetic intervention of seizures improves spatial memory in a mouse model of chronic temporal lobe epilepsy[J]. Epilepsia, 2020, 61(3): 561–571. |
111 | KIM W B, CHO J-H. Encoding of contextual fear memory in hippocampal–amygdala circuit[J]. Nature Communications, 2020, 11(1): 1382. |
112 | FENG J, ZHANG L, CHEN C, et al. A cognitive neurogenetic approach to uncovering the structure of executive functions[J]. Nature Communications, 2022, 13(1): 4588. |
113 | DAVIS C J, VANDERHEYDEN W M. Optogenetic sleep enhancement improves fear-associated memory processing following trauma exposure in rats[J]. Scientific Reports, 2020, 10(1): 18025. |
114 | VETERE G, TRAN L M, MOBERG S, et al. Memory formation in the absence of experience[J]. Nature Neuroscience, 2019, 22(6): 933–940. |
115 | WANG K-W, YE X-L, HUANG T, et al. Optogenetics-induced activation of glutamate receptors improves memory function in mice with Alzheimer's disease[J]. Neural Regeneration Research, 2019, 14(12): 2147. |
116 | PRESTORI F, MONTAGNA I, D'ANGELO E, et al. The Optogenetic Revolution in Cerebellar Investigations[J]. International Journal of Molecular Sciences, 2020, 21(7): 2494. |
117 | SHIN H, SON Y, CHAE U, et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo[J]. Nature Communications, 2019, 10(1): 3777. |
118 | FENG Y-S, TAN Z-X, WU L-Y, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease[J]. Ageing Research Reviews, 2020, 64: 101192. |
119 | JAEGER B N, LINKER S B, PARYLAK S L, et al. A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons[J]. Nature Communications, 2018, 9(1): 3084. |
120 | JOHN R A, ACHARYA J, ZHU C, et al. Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks[J]. Nature Communications, 2020, 11(1): 3211. |
121 | 于袁欢,周阳,王欣怡,等.光遗传学照进生物医学研究进展[J].合成生物学,2023,4(01):102-140. |
YU Y H, ZHOU Y, WANG X Y, et al. Progress in biomedical research illuminated by optogenetics [J]. Synthetic Biology, 2023, 4(01): 102-140. | |
122 | ORDAZ J, WU W, XU X-M. Optogenetics and its application in neural degeneration and regeneration[J]. Neural Regeneration Research, 2017, 12(8): 1197. |
123 | SUN Y, LI M, CAO S, et al. Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects[J]. International Journal of Molecular Sciences, 2022, 23(3): 1800. |
124 | LIU X, QIAO Z, CHAI Y, et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation[J]. Proceedings of the National Academy of Sciences, 2021, 118(10): e2015685118. |
[1] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[2] | 刘韧玫, 李乐诗, 杨小燕, 陈显军, 杨弋. RNA转录后代谢时空精密控制技术[J]. 合成生物学, 2023, 4(1): 141-164. |
[3] | 于袁欢, 周阳, 王欣怡, 孔德强, 叶海峰. 光遗传学照进生物医学研究进展[J]. 合成生物学, 2023, 4(1): 102-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||