合成生物学 ›› 2024, Vol. 5 ›› Issue (1): 191-201.DOI: 10.12211/2096-8280.2023-021
孟倩1, 尹聪1, 黄卫人1,2
收稿日期:
2023-03-07
修回日期:
2023-07-11
出版日期:
2024-02-29
发布日期:
2024-03-20
通讯作者:
黄卫人
作者简介:
基金资助:
Qian MENG1, Cong YIN1, Weiren HUANG1,2
Received:
2023-03-07
Revised:
2023-07-11
Online:
2024-02-29
Published:
2024-03-20
Contact:
Weiren HUANG
摘要:
类器官技术的发展为更接近机体细胞组成和病理生理特征的癌症模型开辟了新途径。患者来源的肿瘤类器官在多次传代后仍能维持原有肿瘤的组织病理学及遗传表型特征,不仅可作为测试新型抗癌药物的优良模型,也可通过其药物敏感性测试预测患者的临床反应,为肿瘤患者的个体化精准治疗提供可靠的依据。合成生物学是以工程学思想为指导,提供独特工具来重建空间和动态信号,调控细胞间通信。合成生物学的快速发展,为肿瘤类器官在肿瘤的发生发展及肿瘤治疗等方面提供了一系列崭新的思路和方法,包括如何工程化重建类器官空间与动态信号、细胞稳态维持、细胞间通信调控等。本文概述了肿瘤类器官的构建过程及其在合成生物学中的应用,讨论了肿瘤类器官当前在构建效率、标准化、自动化、精确度等方面的局限性,最后展望了合成生物学在推动肿瘤类器官结构和功能复杂化方面的前景。
中图分类号:
孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201.
Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology[J]. Synthetic Biology Journal, 2024, 5(1): 191-201.
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. |
2 | WU C C, LI M N, MENG H B, et al. Analysis of status and countermeasures of cancer incidence and mortality in China[J]. Science China Life Sciences, 2019, 62(5): 640-647. |
3 | SU M, XIAO Y H, MA J L, et al. Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers[J]. Molecular Cancer, 2019, 18(1): 90. |
4 | BALANI S, NGUYEN L V, EAVES C J. Modeling the process of human tumorigenesis[J]. Nature Communications, 2017, 8: 15422. |
5 | GILLET J P, VARMA S, GOTTESMAN M M. The clinical relevance of cancer cell lines[J]. Journal of the National Cancer Institute, 2013, 105(7): 452-458. |
6 | ZHOU J J, SU J, FU X T, et al. Microfluidic device for primary tumor spheroid isolation[J].Experimental Hematology & Oncology, 2017, 6(1): 22. |
7 | BEN-DAVID U, HA G, TSENG Y Y, et al. Patient-derived xenografts undergo mouse-specific tumor evolution[J]. Nature Genetics, 2017, 49(11): 1567-1575. |
8 | BYRNE A T, ALFÉREZ D G, AMANT F, et al. Interrogating open issues in cancer medicine with patient-derived xenografts[J]. Nature Reviews Cancer, 2017, 17:632. |
9 | GAO H, KORN J M, FERRETTI S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[J]. Nature Medicine, 2015, 21(11): 1318-1325. |
10 | ROSENBLUTH J M, SCHACKMANN R C J, GRAY G K, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nature Communications, 2020, 11: 1711. |
11 | DUTTA D, HEO I, CLEVERS H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends in Molecular Medicine, 2017, 23(5): 393-410. |
12 | QIAN X Y, SONG H J, MING G L. Brain organoids: advances, applications and challenges[J]. Development, 2019, 146(8): dev166074. |
13 | TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduction and Targeted Therapy, 2022, 7: 168. |
14 | SHINOZAWA T, KIMURA M, CAI Y Q, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids[J]. Gastroenterology, 2021, 160(3): 831-846.e10. |
15 | COWAN C S, RENNER M, DE GENNARO M, et al. Cell types of the human retina and its organoids at single-cell resolution[J]. Cell, 2020, 182(6): 1623-1640.e34. |
16 | ZHAO J, FU Y, YAMAZAKI Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids[J]. Nature Communications, 2020, 11: 5540. |
17 | SABATE-SOLER S, NICKELS S L, SARAIVA C, et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality[J]. Glia, 2022, 70(7): 1267-1288. |
18 | HUANG W K, WONG S Z H, PATHER S R, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J]. Cell Stem Cell, 2021, 28(9): 1657-1670.e10. |
19 | UNGRICHT R, GUIBBAL L, LASBENNES M C, et al. Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis[J]. Cell Stem Cell, 2022, 29(1): 160-175.e7. |
20 | MAIER C F, ZHU L, NANDURI L K, et al. Patient-derived organoids of cholangiocarcinoma[J]. International Journal of Molecular Sciences, 2021, 22(16): 8675. |
21 | HENDRIKS D, ARTEGIANI B, HU H L, et al. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver[J]. Nature Protocols, 2021, 16(1): 182-217. |
22 | BETGE J, RINDTORFF N, SAUER J, et al. The drug-induced phenotypic landscape of colorectal cancer organoids[J]. Nature Communications, 2022, 13: 3135. |
23 | QIANG Y L, YAO N, ZUO F, et al. Tumor organoid model and its pharmacological applications in tumorigenesis prevention[J]. Current Molecular Pharmacology, 2023, 14(4): 435-447. |
24 | LI M H, GONG J, GAO L X, et al. Advanced human developmental toxicity and teratogenicity assessment using human organoid models[J]. Ecotoxicology and Environmental Safety, 2022, 235: 113429. |
25 | MAHAPATRA C, LEE R D, PAUL M K. Emerging role and promise of nanomaterials in organoid research[J]. Drug Discovery Today, 2022, 27(3): 890-899. |
26 | PRIOR N, INACIO P, HUCH M. Liver organoids: from basic research to therapeutic applications[J]. Gut, 2019, 68(12): 2228-2237. |
27 | STEIN M C, BRAUN F, KREBS C F, et al. Kidney organoid systems for studies of immune-mediated kidney diseases: challenges and opportunities[J]. Cell and Tissue Research, 2021, 385(2): 457-473. |
28 | LU Z L, NIE B N, ZHAI W W, et al. Delineating the longitudinal tumor evolution using organoid models[J]. Journal of Genetics and Genomics, 2021, 48(7): 560-570. |
29 | XU H X, LYU X D, YI M, et al. Organoid technology and applications in cancer research[J]. Journal of Hematology & Oncology, 2018, 11(1): 116. |
30 | ELBADAWY M, ABUGOMAA A, YAMAWAKI H, et al. Development of prostate cancer organoid culture models in basic medicine and translational research[J]. Cancers, 2020, 12(4): 777. |
31 | BAO Y L, WANG L, PAN H T, et al. Animal and organoid models of liver fibrosis[J]. Frontiers in Physiology, 2021, 12: 666138. |
32 | CHEN H D, ZHUO Q F, YE Z, et al. Organoid model: a new hope for pancreatic cancer treatment?[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2021, 1875(1): 188466. |
33 | REN X X, CHEN W K, YANG Q X, et al. Patient-derived cancer organoids for drug screening: basic technology and clinical application[J]. Journal of Gastroenterology and Hepatology, 2022, 37(8): 1446-1454. |
34 | CHOI H, KIM H J, YANG J, et al. Acetylation changes tau interactome to degrade tau in Alzheimer's disease animal and organoid models[J]. Aging Cell, 2020, 19(1): e13081. |
35 | WILSON H V. On some phenomena of coalescence and regeneration in sponges[J]. Journal of Experimental Zoology, 1907, 5(2): 245-258. |
36 | BRÜMMER F, NICKEL M. Sustainable use of marine resources: cultivation of sponges[M/OL]//Progress in molecular and subcellular biology: sponges (porifera). Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, 37: 143-162 [2023-02-01]. . |
37 | EVANS G S, FLINT N, SOMERS A S, et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures[J]. Journal of Cell Science, 1992, 101(1): 219-231. |
38 | WHITEHEAD R H, DEMMLER K, ROCKMAN S P, et al. Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans[J]. Gastroenterology, 1999, 117(4): 858-865. |
39 | FUKAMACHI H. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture[J]. Journal of Cell Science, 1992, 103(2): 511-519. |
40 | PERREAULT N, BEAULIEU J F. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures[J]. Experimental Cell Research, 1996, 224(2): 354-364. |
41 | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. |
42 | GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187. |
43 | VAN DE WETERING M, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945. |
44 | BOJ S F, HWANG C I, BAKER L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2): 324-338. |
45 | SACHS N, DE LIGT J, KOPPER O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2): 373-386.e10. |
46 | YAN H H N, SIU H C, LAW S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6): 882-897.e11. |
47 | LIU H, ZHANG Y, ZHANG Y Y, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(52): 33628-33638. |
48 | NORRIE J L, NITYANANDAM A, LAI K R, et al. Retinoblastoma from human stem cell-derived retinal organoids[J]. Nature Communications, 2021, 12: 4535. |
49 | MO S B, TANG P Y, LUO W Q, et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy[J]. Advanced Science, 2022, 9(31): 2204097. |
50 | DING S L, HSU C, WANG Z H, et al. Patient-derived micro-organospheres enable clinical precision oncology[J]. Cell Stem Cell, 2022, 29(6): 905-917.e6. |
51 | BHATIA S, KRAMER M, RUSSO S, et al. Patient-derived triple-negative breast cancer organoids provide robust model systems that recapitulate tumor intrinsic characteristics[J]. Cancer Research, 2022, 82(7): 1174-1192. |
52 | DRIEHUIS E, KRETZSCHMAR K, CLEVERS H. Establishment of patient-derived cancer organoids for drug-screening applications[J]. Nature Protocols, 2020, 15(10): 3380-3409. |
53 | DIJKSTRA K K, CATTANEO C M, WEEBER F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6): 1586-1598.e12. |
54 | ZHAO H, CHENG Y L, KALRA A, et al. Generation and multiomic profiling of a TP53/CDKN2A double-knockout gastroesophageal junction organoid model[J]. Science Translational Medicine, 2022, 14(673): eabq6146. |
55 | NUCIFORO S, FOFANA I, MATTER M S, et al. Organoid models of human liver cancers derived from tumor needle biopsies[J]. Cell Reports, 2018, 24(5): 1363-1376. |
56 | TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discovery, 2018, 8(9): 1112-1129. |
57 | CHEN P, ZHANG X, DING R B, et al. Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer[J]. Advanced Science, 2021, 8(22): 2101176. |
58 | LEE S H, HU W H, MATULAY J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173(2): 515-528.e17. |
59 | 类器官药物敏感性检测指导肿瘤精准治疗临床应用专家共识(2022年版)编写专家组. 类器官药物敏感性检测指导肿瘤精准治疗临床应用专家共识(2022年版)[J]. 中国癌症防治杂志, 2022, 14(3): 234-239. |
Group of expert consensus of clinical application about tumor precision therapy guided by organoid-based drug sensitivity testing (2022 edition). Expert consensus of clinical application about tumor precision therapy guided by organoid-based drug sensitivity testing (2022 edition) [J]. Chinese Journal of Oncology Prevention and Treatment, 2022, 14(3): 234-239. | |
60 | GAO M, HARPER M M, LIN M, et al. Development of a single-cell technique to increase yield and use of gastrointestinal cancer organoids for personalized medicine application[J]. Journal of the American College of Surgeons, 2021, 232(4): 504-514. |
61 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5): 381-390. |
62 | JIANG K Y, KOOB J, DAWN CHEN X, et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR[J]. Nature Biotechnology, 2023, 41(5): 698-707. |
63 | KHALIL A S, COLLINS J J. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11(5): 367-379. |
64 | SCHMIDT F, ZIMMERMANN J, TANNA T, et al. Noninvasive assessment of gut function using transcriptional recording sentinel cells[J]. Science, 2022, 376(6594): eabm6038. |
65 | 吴晓昊, 廖荣东, 李飞云, 等. 合成生物学在疾病诊疗中的应用[J]. 合成生物学, 2023, 4(2): 244-262. |
WU X H, LIAO R D, LI F Y, et al. Applications of synthetic biology in disease diagnosis and treatment[J]. Synthetic Biology Journal, 2023, 4(2): 244-262. | |
66 | GUO W X, LI L, HE J, et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips[J]. Nature Genetics, 2020, 52(9): 908-918. |
67 | OGAWA J, PAO G M, SHOKHIREV M N, et al. Glioblastoma model using human cerebral organoids[J]. Cell Reports, 2018, 23(4): 1220-1229. |
68 | BIAN S, REPIC M, GUO Z M, et al. Genetically engineered cerebral organoids model brain tumor formation[J]. Nature Methods, 2018, 15(8): 631-639. |
69 | DEKKERS J F, WHITTLE J R, VAILLANT F, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids[J]. Journal of the National Cancer Institute, 2020, 112(5): 540-544. |
70 | JACOB F, SALINAS R D, ZHANG D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell, 2020, 180(1): 188-204.e22. |
71 | SCHNALZGER T E, DE GROOT M H, ZHANG C C, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids[J]. The EMBO Journal, 2019, 38(12): e100928. |
72 | YU L, LI Z C, MEI H B, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro [J]. Clinical & Translational Immunology, 2021, 10(2): e1248. |
73 | SAKO K, PRADHAN S J, BARONE V, et al. Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation[J]. Cell Reports, 2016, 16(3): 866-877. |
74 | ČAPEK D, SMUTNY M, TICHY A M, et al. Light-activated Frizzled7 reveals a permissive role of non-canonical Wnt signaling in mesendoderm cell migration[J]. eLife, 2019, 8: 42093. |
75 | REPINA N A, BAO X P, ZIMMERMANN J A, et al. Optogenetic control of Wnt signaling for modeling early embryogenic patterning with human pluripotent stem cells[EB/OL]. bioRxiv, 2019[2023-02-01]. . |
76 | LEGNINI I, EMMENEGGER L, ZAPPULO A, et al. Spatio-temporal, optogenetic control of gene expression in organoids[EB/OL]. bioRxiv, 461850[2023-02-10]. . |
77 | KARTHAUS W R, IAQUINTA P J, DROST J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures[J]. Cell, 2014, 159(1): 163-175. |
78 | NEAL J T, LI X N, ZHU J J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7): 1972-1988.e16. |
79 | HU Y W, SUI X Z, SONG F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week[J]. Nature Communications, 2021, 12: 2581. |
80 | LEE K K, MCCAULEY H A, BRODA T R, et al. Human stomach-on-a-chip with luminal flow and peristaltic-like motility[J]. Lab on a Chip, 2018, 18(20): 3079-3085. |
81 | PARK S E, GEORGESCU A, HUH D. Organoids-on-a-chip[J]. Science, 2019, 364(6444): 960-965. |
82 | SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491): 181-189. |
83 | SCHUSTER B, JUNKIN M, KASHAF S S, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids[J]. Nature Communications, 2020, 11: 5271. |
84 | BIAN X S, LI G, WANG C, et al. A deep learning model for detection and tracking in high-throughput images of organoid[J]. Computers in Biology and Medicine, 2021, 134: 104490. |
85 | SKARDAL A, ALEMAN J, FORSYTHE S, et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems[J]. Biofabrication, 2020, 12(2): 025017. |
86 | KELLER P J, LIN A F, ARENDT L M, et al. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines[J].Breast Cancer Research, 2010, 12(5): R87. |
87 | PRIYA R, ALLANKI S, GENTILE A, et al. Tension heterogeneity directs form and fate to pattern the myocardial wall[J]. Nature, 2020, 588(7836): 130-134. |
88 | BRASSARD J A, LUTOLF M P. Engineering stem cell self-organization to build better organoids[J]. Cell Stem Cell, 2019, 24(6): 860-876. |
89 | STEVENS A J, HARRIS A R, GERDTS J, et al. Programming multicellular assembly with synthetic cell adhesion molecules[J]. Nature, 2023, 614(7946): 144-152. |
90 | TRENTESAUX C, YAMADA T, KLEIN O D, et al. Harnessing synthetic biology to engineer organoids and tissues[J]. Cell Stem Cell, 2023, 30(1): 10-19. |
[1] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[2] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[3] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[4] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[5] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[6] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[7] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[8] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[9] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[10] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[11] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[12] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[13] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[14] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[15] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||