合成生物学 ›› 2024, Vol. 5 ›› Issue (1): 202-216.DOI: 10.12211/2096-8280.2022-068
• 特约评述 • 上一篇
杜瑶1,2, 高宏丹1,2, 刘家坤3,4, 刘孝荣2, 邢志浩2, 张涛5, 马东礼2
收稿日期:
2022-11-26
修回日期:
2023-02-15
出版日期:
2024-02-29
发布日期:
2024-03-20
通讯作者:
马东礼
作者简介:
基金资助:
Yao DU1,2, Hongdan GAO1,2, Jiakun LIU3,4, Xiaorong LIU2, Zhihao XING2, Tao ZHANG5, Dongli MA2
Received:
2022-11-26
Revised:
2023-02-15
Online:
2024-02-29
Published:
2024-03-20
Contact:
Dongli MA
摘要:
CRISPR-Cas系统作为原核生物获得性免疫系统,由簇状规则间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)和CRISPR相关蛋白(CRISPR-associated proteins, Cas)构成,因其识别和切割特定DNA或RNA序列,而成为分子诊断领域研究的热点。研究人员利用Cas蛋白(Cas12、Cas13、Cas14、Cas3等)结合信号放大和转化技术(荧光法、电位法、比色法、侧向流动技术等),开发了许多高灵敏度、高特异性、低成本的诊断平台,为病原核酸检测提供了新途径。本文介绍了CRISPR-Cas系统的生物学机制及分类,总结现有的基于Cas蛋白反式切割活性开发的病原核酸检测技术,描述其特点、功能和应用场景,并对该系统的未来应用前景进行展望,期望CRISPR-Cas系统成为包括核酸检测在内的多靶标的理想检测平台。
中图分类号:
杜瑶, 高宏丹, 刘家坤, 刘孝荣, 邢志浩, 张涛, 马东礼. CRISPR-Cas系统在病原核酸检测中的研究进展[J]. 合成生物学, 2024, 5(1): 202-216.
Yao DU, Hongdan GAO, Jiakun LIU, Xiaorong LIU, Zhihao XING, Tao ZHANG, Dongli MA. Research progress of the CRISPR-Cas system in the detecting pathogen nucleic acids[J]. Synthetic Biology Journal, 2024, 5(1): 202-216.
CRISPR类型 | 技术名称 | 效应 蛋白 | 目标 分子 | 扩增 方式 | 检测线 | 病原体 | 检测技术 |
---|---|---|---|---|---|---|---|
Type Ⅰ-E | CONAN[ | Cas3 | DNA | RT-LAMP | 1 copy | SARS-CoV-2 IAV | 侧向流动分析 |
Type Ⅴ | DETECTR[ | Cas12a | DNA | RPA | amol/L | HPV16/18 SARS-CoV-2 | 荧光信号 |
OR-DETECTR[ | Cas12a | RNA | RT-RPA | 1~2,5 copies/μL | SARS-CoV-2 H1N1 | 荧光信号、 侧向流动分析 | |
HOLMES[ | Cas12a | DNA RNA | PCR | amol/L | 日本脑炎病毒 伪狂犬病毒 | 荧光信号 | |
HOLMESv2[ | Cas12b | DNA RNA | LAMP | amol/L | 日本脑炎病毒 | 荧光信号 | |
CDetection[ | AaCas12b | DNA | RPA | nmol/L | HPV16/18 | 荧光信号 | |
E-CRISPR[ | Cas12a | DNA | — | pmol/L | HPV1、B19 | 电化学 | |
MoECS[ | Cas12 | DNA | — | fmol/L | SARS-CoV-2 Delta 变异株 | 电化学 | |
CRISPR-ENHANCE[ | LbCas12a | RNA | RT-LAMP | SARS-CoV-2、HIV、HCV | 侧向流动分析 | ||
AIOD-CRISPR[ | LbaCas12a | RNA | RPA | 11 copies | SARS-CoV-2 HIV-1 | 荧光信号、 视觉法 | |
SCAN[ | Cas12a | DNA RNA | RT-PCR | 13.5 copies/μL | SARS-CoV-2 HIV-1 | 纳米孔传感器 | |
TB-QUICK[ | Cas12b | DNA | LAMP | 1.3 copies/μL | 结核分枝杆菌 | 荧光信号 | |
STOPCovid[ | Cas12 | DNA RNA | LAMP | 100 copies | SARS-CoV-2 | 荧光信号 | |
STOPCovid.v2[ | Cas12 | DNA RNA | LAMP | 2000 copies/mL | SARS-CoV-2 | 荧光信号 | |
sPAMC[ | LbCas12a | DNA RNA | RPA | 1 copy/μL | SARS-CoV-2 | 荧光信号、 侧向流动分析 | |
Cas14-DETECTR[ | Cas14a | DNA | RPA | fmol/L | HBoV-1 | 荧光信号 | |
ACasB[ | Cas14a1 | DNA | — | 400 CFU/mL | 金黄色葡萄球菌 | 荧光信号 | |
Type Ⅵ | SHERLOCK[ | Cas13a | DNA RNA | RPA | amol/L | 病毒、细菌 | 荧光信号 |
HUDSON[ | Cas13a | RNA | RT-RPA | 1copy/μL | 寨卡病毒、登革病毒 | 荧光信号、 侧向流动分析 | |
OR-SHERLOCK[ | Cas13a | RNA | RT-RPA | 1~2 copies/μL, 5 copies/μL | SARS-CoV-2 H1N1 | 荧光信号、 侧向流动分析 | |
SHINE[ | Cas13 | RNA | RT-RPA | 10 copies/μL | SARS-CoV-2 | 智能手机(管内荧光读数或侧向流动分析) | |
FIND-IT[ | Lbu Cas13a | RNA | — | 31 copies/μL | SARS-CoV-2 | 荧光信号 (集成检测器) | |
CARMEN[ | LwCas13a | DNA RNA | PCR或RPA | amol/L | 169种人类感染病毒 | 荧光信号 | |
mCARMEN[ | LwCas13a | DNA RNA | PCR或RPA | 102 copies/μL | 21种人类呼吸道病毒 | 荧光信号 | |
Type Ⅴ Type Ⅵ Type Ⅲ | SHERLOCKv2[ | Cas13 Cas12a Csm6 | DNA RNA | RPA | zmol/L | 病毒、细菌 | 荧光信号、 侧向流动分析 |
表1 基于CRISPR-Cas系统开发的部分诊断技术
Table 1 Technologies for detecting pathogens based on the CRISPR-Cas system
CRISPR类型 | 技术名称 | 效应 蛋白 | 目标 分子 | 扩增 方式 | 检测线 | 病原体 | 检测技术 |
---|---|---|---|---|---|---|---|
Type Ⅰ-E | CONAN[ | Cas3 | DNA | RT-LAMP | 1 copy | SARS-CoV-2 IAV | 侧向流动分析 |
Type Ⅴ | DETECTR[ | Cas12a | DNA | RPA | amol/L | HPV16/18 SARS-CoV-2 | 荧光信号 |
OR-DETECTR[ | Cas12a | RNA | RT-RPA | 1~2,5 copies/μL | SARS-CoV-2 H1N1 | 荧光信号、 侧向流动分析 | |
HOLMES[ | Cas12a | DNA RNA | PCR | amol/L | 日本脑炎病毒 伪狂犬病毒 | 荧光信号 | |
HOLMESv2[ | Cas12b | DNA RNA | LAMP | amol/L | 日本脑炎病毒 | 荧光信号 | |
CDetection[ | AaCas12b | DNA | RPA | nmol/L | HPV16/18 | 荧光信号 | |
E-CRISPR[ | Cas12a | DNA | — | pmol/L | HPV1、B19 | 电化学 | |
MoECS[ | Cas12 | DNA | — | fmol/L | SARS-CoV-2 Delta 变异株 | 电化学 | |
CRISPR-ENHANCE[ | LbCas12a | RNA | RT-LAMP | SARS-CoV-2、HIV、HCV | 侧向流动分析 | ||
AIOD-CRISPR[ | LbaCas12a | RNA | RPA | 11 copies | SARS-CoV-2 HIV-1 | 荧光信号、 视觉法 | |
SCAN[ | Cas12a | DNA RNA | RT-PCR | 13.5 copies/μL | SARS-CoV-2 HIV-1 | 纳米孔传感器 | |
TB-QUICK[ | Cas12b | DNA | LAMP | 1.3 copies/μL | 结核分枝杆菌 | 荧光信号 | |
STOPCovid[ | Cas12 | DNA RNA | LAMP | 100 copies | SARS-CoV-2 | 荧光信号 | |
STOPCovid.v2[ | Cas12 | DNA RNA | LAMP | 2000 copies/mL | SARS-CoV-2 | 荧光信号 | |
sPAMC[ | LbCas12a | DNA RNA | RPA | 1 copy/μL | SARS-CoV-2 | 荧光信号、 侧向流动分析 | |
Cas14-DETECTR[ | Cas14a | DNA | RPA | fmol/L | HBoV-1 | 荧光信号 | |
ACasB[ | Cas14a1 | DNA | — | 400 CFU/mL | 金黄色葡萄球菌 | 荧光信号 | |
Type Ⅵ | SHERLOCK[ | Cas13a | DNA RNA | RPA | amol/L | 病毒、细菌 | 荧光信号 |
HUDSON[ | Cas13a | RNA | RT-RPA | 1copy/μL | 寨卡病毒、登革病毒 | 荧光信号、 侧向流动分析 | |
OR-SHERLOCK[ | Cas13a | RNA | RT-RPA | 1~2 copies/μL, 5 copies/μL | SARS-CoV-2 H1N1 | 荧光信号、 侧向流动分析 | |
SHINE[ | Cas13 | RNA | RT-RPA | 10 copies/μL | SARS-CoV-2 | 智能手机(管内荧光读数或侧向流动分析) | |
FIND-IT[ | Lbu Cas13a | RNA | — | 31 copies/μL | SARS-CoV-2 | 荧光信号 (集成检测器) | |
CARMEN[ | LwCas13a | DNA RNA | PCR或RPA | amol/L | 169种人类感染病毒 | 荧光信号 | |
mCARMEN[ | LwCas13a | DNA RNA | PCR或RPA | 102 copies/μL | 21种人类呼吸道病毒 | 荧光信号 | |
Type Ⅴ Type Ⅵ Type Ⅲ | SHERLOCKv2[ | Cas13 Cas12a Csm6 | DNA RNA | RPA | zmol/L | 病毒、细菌 | 荧光信号、 侧向流动分析 |
图1 基于CRISPR-Cas12a的DETECTR检测方法原理图(部分绘图素材来自Figdraw)
Fig. 1 Schematics of the CRISPR-Cas12a-based CRISPR-diagnostic method DETECTR(Some drawing elements are from Figdraw)
图2 基于CRISPR-Cas12a的E-CRISPR检测方法原理图(图片绘制来自BioRender)
Fig. 2 Schematics of the CRISPR-Cas12a-based diagnostic method E-CRISPR(The picture was created in BioRender)
图3 基于CRISPR-Cas13a的SHERLOCK检测方法原理图(部分绘图素材来自Figdraw)
Fig. 3 Schematics of the CRISPR-Cas13-based diagnostic method SHERLOCK(Some drawing elements are from Figdraw)
1 | HWANG H, HWANG B Y, BUENO J. Biomarkers in infectious diseases[J]. Disease Markers, 2018, 2018: 8509127. |
2 | 库婷婷, 刘倩, 桑楠, 等. 几种典型呼吸道病毒的病原学特征及其检测方法[J]. 环境化学, 2020, 39(4): 841-851. |
KU T T, LIU Q, SANG N, et al. Pathogenic characteristics and detection methods of several typical respiratory viruses[J]. Environmental Chemistry, 2020, 39(4): 841-851. | |
3 | MATTHIJS G, SOUCHE E, ALDERS M, et al. Guidelines for diagnostic next-generation sequencing[J]. European Journal of Human Genetics, 2016, 24(1): 2-5. |
4 | MORENS D M, FAUCI A S. Emerging pandemic diseases: how we got to COVID-19[J]. Cell, 2020, 182(5): 1077-1092. |
5 | 张礼堃, 邹秉杰, 宋沁馨, 等. PCR技术在新冠病毒核酸检测中的应用[J]. 医学研究生学报, 2021, 34(5): 539-544. |
ZHANG L K, ZOU B J, SONG Q X, et al. Application of PCR in novel coronavirus nucleic acid detection[J]. Journal of Medical Postgraduates, 2021, 34(5): 539-544. | |
6 | PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR-Cas technologies and applications[J]. Nature Reviews Molecular Cell Biology, 2019, 20(8): 490-507. |
7 | BHATTACHARYYA R P, THAKKU S G, HUNG D T. Harnessing CRISPR effectors for infectious disease diagnostics[J]. ACS Infectious Diseases, 2018, 4(9): 1278-1282. |
8 | ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433. |
9 | JANSEN R, EMBDEN J D, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575. |
10 | BARRANGOU R. CRISPR-Cas systems and RNA-guided interference[J]. Wiley Interdisciplinary Reviews RNA, 2013, 4(3): 267-278. |
11 | GARNEAU J E, DUPUIS M È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71. |
12 | YAO R L, LIU D, JIA X, et al. CRISPR-Cas9/Cas12a biotechnology and application in bacteria[J]. Synthetic and Systems Biotechnology, 2018, 3(3): 135-149. |
13 | JACKSON S A, MCKENZIE R E, FAGERLUND R D, et al. CRISPR-Cas: adapting to change[J]. Science, 2017, 356(6333): eaal5056. |
14 | HILLE F, RICHTER H, WONG S P, et al. The biology of CRISPR-Cas: backward and forward[J]. Cell, 2018, 172(6): 1239-1259. |
15 | GASIUNAS G, SINKUNAS T, SIKSNYS V. Molecular mechanisms of CRISPR-mediated microbial immunity[J]. Cellular and Molecular Life Sciences, 2014, 71(3): 449-465. |
16 | MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2015, 13(11): 722-736. |
17 | MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18(2): 67-83. |
18 | MAKAROVA K S, ZHANG F, KOONIN E V. SnapShot: class 1 CRISPR-cas systems[J]. Cell, 2017, 168(5): 946-946.e1. |
19 | SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3): 385-397. |
20 | LI P P, WANG L, YANG J N, et al. Applications of the CRISPR-Cas system for infectious disease diagnostics[J]. Expert Review of Molecular Diagnostics, 2021, 21(7): 723-732. |
21 | BROUNS S J J, JORE M M, LUNDGREN M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960-964. |
22 | HAYES R P, XIAO Y B, DING F, et al. Structural basis for promiscuous PAM recognition in type Ⅰ-E Cascade from E. coli [J]. Nature, 2016, 530(7591): 499-503. |
23 | ZHENG Y L, LI J, WANG B Y, et al. Endogenous typeⅠCRISPR-Cas: from foreign DNA defense to prokaryotic engineering[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 62. |
24 | YOSHIMI K, TAKESHITA K, YAMAYOSHI S, et al. CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus[J]. iScience, 2022, 25(2): 103830. |
25 | HOCHSTRASSER M L, TAYLOR D W, BHAT P, et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(18): 6618-6623. |
26 | ZHAO H T, SHENG G, WANG J Y, et al. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli [J]. Nature, 2014, 515(7525): 147-150. |
27 | KAZLAUSKIENE M, KOSTIUK G, VENCLOVAS Č, et al. A cyclic oligonucleotide signaling pathway in typeⅢCRISPR-Cas systems[J]. Science, 2017, 357(6351): 605-609. |
28 | PINILLA-REDONDO R, MAYO-MUÑOZ D, RUSSEL J, et al. Type Ⅳ CRISPR-Cas systems are highly diverse and involved in competition between plasmids[J]. Nucleic Acids Research, 2020, 48(4): 2000-2012. |
29 | SHMAKOV S, SMARGON A, SCOTT D, et al. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2017, 15(3): 169-182. |
30 | JIANG W Y, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3): 233-239. |
31 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
32 | SWARTS D C, JINEK M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a[J]. Molecular Cell, 2019, 73(3): 589-600.e4. |
33 | ZENG R J, XU J H, LU L L, et al. Photoelectrochemical bioanalysis of microRNA on yolk-in-shell Au@CdS based on the catalytic hairpin assembly-mediated CRISPR-Cas12a system[J]. Chemical Communications, 2022, 58(54): 7562-7565. |
34 | CHEN H, LI Z Y, CHEN J S, et al. CRISPR/Cas12a-based electrochemical biosensor for highly sensitive detection of cTnI[J]. Bioelectrochemistry, 2022, 146: 108167. |
35 | KIM D, KIM J, HUR J K, et al. Erratum: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J]. Nature Biotechnology, 2016, 34(8): 888. |
36 | XIN C C, YIN J H, YUAN S P, et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption[J]. Nature Communications, 2022, 13: 5623. |
37 | CASTELLE C J, WRIGHTON K C, THOMAS B C, et al. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling[J]. Current Biology, 2015, 25(6): 690-701. |
38 | HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839-842. |
39 | KHAN M Z, HAIDER S, MANSOOR S, et al. Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a[J]. Trends in Biotechnology, 2019, 37(8): 800-804. |
40 | ANANTHARAMAN V, MAKAROVA K S, BURROUGHS A M, et al. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing[J]. Biology Direct, 2013, 8: 15. |
41 | ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675): 280-284. |
42 | COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366): 1019-1027. |
43 | MAKAROVA K S, WOLF Y I, KOONIN E V. Classification and nomenclature of CRISPR-Cas systems: where from here?[J]. The CRISPR Journal, 2018, 1(5): 325-336. |
44 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
45 | 李洋, 申晓林, 孙新晓, 等. CRISPR基因编辑技术在微生物合成生物学领域的研究进展[J]. 合成生物学, 2021, 2(1): 106-120. |
LI Y, SHEN X L, SUN X X, et al. Advances of CRISPR gene editing in microbial synthetic biology[J]. Synthetic Biology Journal, 2021, 2(1): 106-120. | |
46 | PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5): 1255-1266. |
47 | HILTON I B, D’IPPOLITO A M, VOCKLEY C M, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers[J]. Nature Biotechnology, 2015, 33(5): 510-517. |
48 | SLOMOVICS, PARDEEK, COLLINSJ J. Synthetic biology devices for in vitro and in vivo diagnostics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14429-14435. |
49 | LU T K, BOWERS J, KOERIS M S. Advancing bacteriophage-based microbial diagnostics with synthetic biology[J]. Trends in Biotechnology, 2013, 31(6): 325-327. |
50 | QUAN J, LANGELIER C, KUCHTA A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences[J]. Nucleic Acids Research, 2019, 47(14): e83. |
51 | ZHOU W H, HU L, YING L M, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection[J]. Nature Communications, 2018, 9: 5012. |
52 | TSOU J H, LENG Q X, JIANG F. A CRISPR test for detection of circulating nuclei acids[J]. Translational Oncology, 2019, 12(12): 1566-1573. |
53 | SUN Y Y, YU L, LIU C X, et al. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a[J]. Journal of Translational Medicine, 2021, 19(1): 74. |
54 | LI S Y, CHENG Q X, WANG J M, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discovery, 2018, 4: 20. |
55 | LI L X, LI S Y, WU N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. ACS Synthetic Biology, 2019, 8(10): 2228-2237. |
56 | TENG F, GUO L, CUI T T, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity[J]. Genome Biology, 2019, 20(1): 132. |
57 | DAI Y F, SOMOZA R A, WANG L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor[J]. Angewandte Chemie (International Ed in English), 2019, 58(48): 17399-17405. |
58 | WU C S, CHEN Z, LI C Z, et al. CRISPR-Cas12a-empowered electrochemical biosensor for rapid and ultrasensitive detection of SARS-CoV-2 delta variant[J]. Nano-Micro Letters, 2022, 14(1): 159. |
59 | NGUYEN L T, GURIJALA J, RANANAWARE S R, et al. CRISPR-ENHANCE: an enhanced nucleic acid detection platform using Cas12a[J]. Methods, 2022, 203: 116-124. |
60 | DING X, YIN K, LI Z Y, et al. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus[EB/OL]. BioRxiv. (2020-03-21) [2022-11-26]. . |
61 | NOURI R, JIANG Y Q, TANG Z F, et al. Detection of SARS-CoV-2 with solid-state CRISPR-Cas12a-assisted nanopores[J]. Nano Letters, 2021, 21(19): 8393-8400. |
62 | SAM I K, CHEN Y Y, MA J, et al. TB-QUICK: CRISPR-Cas12b-assisted rapid and sensitive detection of Mycobacterium tuberculosis [J]. Journal of Infection, 2021, 83(1): 54-60. |
63 | JOUNG J, LADHA A, SAITO M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics[EB/OL]. MedRxiv. (2020-05-08) [2022-11-26]. . |
64 | JOUNG J, LADHA A, SAITO M, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing[J]. The New England Journal of Medicine, 2020, 383(15): 1492-1494. |
65 | LU S H, TONG X H, HAN Y, et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a[J]. Nature Biomedical Engineering, 2022, 6(3): 286-297. |
66 | AQUINO-JARQUIN G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18: 428-431. |
67 | WEI Y D, TAO Z Z, WAN L, et al. Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection[J]. Biosensors & Bioelectronics, 2022, 211: 114282. |
68 | KELLNER M J, KOOB J G, GOOTENBERG J S, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nature Protocols, 2019, 14(10): 2986-3012. |
69 | ARIZTI-SANZ J, FREIJE C A, STANTON A C, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2[J]. Nature Communications, 2020, 11: 5921. |
70 | LIU T Y, KNOTT G J, SMOCK D C J, et al. Accelerated RNA detection using tandem CRISPR nucleases[J]. Nature Chemical Biology, 2021, 17(9): 982-988. |
71 | ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277-282. |
72 | WELCH N L, ZHU M L, HUA C, et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants[J]. Nature Medicine, 2022, 28(5): 1083-1094. |
73 | GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387): 439-444. |
74 | YAN W X, HUNNEWELL P, ALFONSE L E, et al. Functionally diverse typeⅤCRISPR-Cas systems[J]. Science, 2019, 363(6422): 88-91. |
75 | LEUNG R K K, CHENG Q X, WU Z L, et al. CRISPR-Cas12-based nucleic acids detection systems[J]. Methods, 2022, 203: 276-281. |
76 | NGUYEN L T, SMITH B M, JAIN P K. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection[J]. Nature Communications, 2020, 11: 4906. |
77 | CHEN J S, MA E B, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. |
78 | BROUGHTON J P, DENG X D, YU G X, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nature Biotechnology, 2020, 38(7): 870-874. |
79 | STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 2019, 10: 212. |
80 | ZHANG M Y, LIU C Z, SHI Y, et al. Selective endpoint visualized detection of Vibrio parahaemolyticus with CRISPR/Cas12a assisted PCR using thermal cycler for on-site application[J]. Talanta, 2020, 214: 120818. |
81 | MUKAMA O, WU J H, LI, Z Y, et al. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids[J]. Biosensors & Bioelectronics, 2020, 159: 112143. |
82 | XIAO X X, LIN Z Q, HUANG X H, et al. Rapid and sensitive detection of Vibrio vulnificus using CRISPR/Cas12a combined with a recombinase-aided amplification assay[J]. Frontiers in Microbiology, 2021, 12: 767315. |
83 | TENG F, CUI T T, FENG G H, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 2018, 4: 63. |
84 | LIU X, BU S J, FENG J Q, et al. Electrochemical biosensor for detecting pathogenic bacteria based on a hybridization chain reaction and CRISPR-Cas12a[J]. Analytical and Bioanalytical Chemistry, 2022, 414(2): 1073-1080. |
85 | LI F, YE Q H, CHEN M T, et al. An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection[J]. Biosensors & Bioelectronics, 2021, 179: 113073. |
86 | NOURI R, JIANG Y Q, LIAN X L, et al. Sequence-specific recognition of HIV-1 DNA with solid-state CRISPR-Cas12a-assisted nanopores (SCAN)[J]. ACS Sensors, 2020, 5(5): 1273-1280. |
87 | GORBALENYA A E, BAKER S C, BARIC R S, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2[J]. Nature Microbiology, 2020, 5(4): 536-544. |
88 | RHEE S Y, CLUTTER D, FESSEL W J, et al. Trends in the molecular epidemiology and genetic mechanisms of transmitted human immunodeficiency virus type 1 drug resistance in a large US clinic population[J]. Clinical Infectious Diseases, 2019, 68(2): 213-221. |
89 | ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. |
90 | HADIDI A. Next-generation sequencing and CRISPR/Cas13 editing in viroid research and molecular diagnostics[J]. Viruses, 2019, 11(2): 120. |
91 | GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442. |
92 | LEE R A, PUIG H, NGUYEN P Q, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25722-25731. |
93 | MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387): 444-448. |
94 | BARNES K G, LACHENAUER A E, NITIDO A, et al. Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time[J]. Nature Communications, 2020, 11: 4131. |
95 | GACH P C, IWAI K, KIM P W, et al. Droplet microfluidics for synthetic biology[J]. Lab on a Chip, 2017, 17(20): 3388-3400. |
96 | IWAI K, WEHRS M, GARBER M, et al. Scalable and automated CRISPR-based strain engineering using droplet microfluidics[J]. Microsystems & Nanoengineering, 2022, 8: 31. |
97 | CHEN Y, MEI Y X, ZHAO X H, et al. Reagents-loaded, automated assay that integrates recombinase-aided amplification and Cas12a nucleic acid detection for a point-of-care test[J]. Analytical Chemistry, 2020, 92(21): 14846-14852. |
98 | PATCHSUNG M, JANTARUG K, PATTAMA A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA[J]. Nature Biomedical Engineering, 2020, 4(12): 1140-1149. |
99 | EIBERG H, TROELSEN J, NIELSEN M, et al. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression[J]. Human Genetics, 2008, 123(2): 177-187. |
100 | KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017, 37: 67-78. |
101 | XIAO Y B, LUO M, DOLAN A E, et al. Structure basis for RNA-guided DNA degradation by Cascade and Cas3[J]. Science, 2018, 361(6397): eaat0839. |
102 | KHAN W A, BARNEY R E, TSONGALIS G J. CRISPR-Cas13 enzymology rapidly detects SARS-CoV-2 fragments in a clinical setting[J]. Journal of Clinical Virology, 2021, 145: 105019. |
103 | LIANG M D, LI Z L, WANG W S, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules[J]. Nature Communications, 2019, 10: 3672. |
104 | ARCHAKOV A I, ASEEV A L, BYKOV V A, et al. Challenges of the human proteome project: 10-year experience of the Russian consortium[J]. Journal of Proteome Research, 2019, 18(12): 4206-4214. |
[1] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[2] | 马孟丹, 刘宇辰. 合成生物学在疾病信息记录与实时监测中的应用潜力[J]. 合成生物学, 2023, 4(2): 301-317. |
[3] | 杨璐, 吴楠, 白茸茸, 董维亮, 周杰, 姜岷. 基因回路型全细胞微生物传感器的设计、优化与应用[J]. 合成生物学, 2022, 3(6): 1061-1080. |
[4] | 梁晓声, 郭永超, 门冬, 张先恩. 病毒-纳米金杂合导电网络结构在电化学分析的应用[J]. 合成生物学, 2022, 3(2): 415-427. |
[5] | 张萍, 魏文平, 周英, 叶邦策. 解脂耶氏酵母中光控表达系统的构建及其应用研究[J]. 合成生物学, 2021, 2(5): 778-791. |
[6] | 刘倩, 李金根, 张晨阳, 李芳雅, 田朝光. 工业丝状真菌基因组编辑技术研究进展[J]. 合成生物学, 2021, 2(2): 256-273. |
[7] | 张博, 马永硕, 尚轶, 黄三文. 植物合成生物学研究进展[J]. 合成生物学, 2020, 1(2): 121-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||