合成生物学 ›› 2021, Vol. 2 ›› Issue (4): 598-611.doi: 10.12211/2096-8280.2020-092
于慧敏, 郑煜堃, 杜岩, 王苗苗, 梁有向
收稿日期:
2020-12-30
修回日期:
2021-02-06
出版日期:
2021-08-31
发布日期:
2021-09-10
通讯作者:
于慧敏
作者简介:
基金资助:
Huimin YU, Yukun ZHENG, Yan DU, Miaomiao WANG, Youxiang LIANG
Received:
2020-12-30
Revised:
2021-02-06
Online:
2021-08-31
Published:
2021-09-10
Contact:
Huimin YU
摘要:
合成生物学研究对于我国绿色生物制造产业和可持续发展战略至关重要。启动子是合成生物学核心元件,是在转录水平上实现基因高效、精准表达调控的最关键因素之一。本文重点对原核微生物启动子工程研究的基本内容、研究进展及发展趋势进行了综述。首先概述了启动子序列基本特征及其受RNA聚合酶σ因子识别调控的一般规律;并以大肠杆菌乳糖操纵子为例简要介绍了诱导型启动子的负调控与正调控诱导机制。其次,分别从对靶基因自身内源启动子进行突变改造以及采用高效外源启动子进行替换改造这两个方面入手,阐述了启动子改造的常用策略。进一步对近年来公开报道的不同类型诱导型启动子进行了梳理,小结了代表性化学分子诱导剂以及物理信号诱导方式的种类及基本特征。简述了非模式和模式微生物组成型启动子的研究进展及研究侧重点。结合动态代谢调控技术及人工智能工具的突破性发展,提出具有动态调控功能的特殊启动子的发现与改造、全新性能启动子元件的人工智能设计与改造等将成为启动子工程研究的新方向与新前沿。最后分析了启动子工程领域存在的挑战性问题,展望了今后的研究重点,并结合合成生物学的发展,进一步强调了微生物启动子工程的重要作用。
中图分类号:
于慧敏, 郑煜堃, 杜岩, 王苗苗, 梁有向. 合成生物学研究中的微生物启动子工程策略[J]. 合成生物学, 2021, 2(4): 598-611, doi: 10.12211/2096-8280.2020-092.
Huimin YU, Yukun ZHENG, Yan DU, Miaomiao WANG, Youxiang LIANG. Microbial promoter engineering strategies in synthetic biology[J]. Synthetic Biology Journal, 2021, 2(4): 598-611, doi: 10.12211/2096-8280.2020-092.
1 | CANTON B, LABNO A, ENDY D. Refinement and standardization of synthetic biological parts and devices [J]. Nature Biotechnology, 2008, 26(7): 787-793. |
2 | ARKIN A. Setting the standard in synthetic biology [J]. Nature Biotechnology, 2008, 26(7): 771-774. |
3 | BLAZECK J, ALPER H S. Promoter engineering: recent advances in controlling transcription at the most fundamental level [J]. Biotechnology Journal, 2013, 8(1): 46-58. |
4 | ROSS W, GOSINK K K, SALOMON J, et al. A third recognition element in bacterial promoters: DNA binding by the α subunit of RNA polymerase [J]. Science, 1993, 262(5138): 1407-1413. |
5 | ISHIHAMA A. Functional modulation of Escherichia coli RNA polymerase [J]. Annual Review of Microbiology, 2000, 54: 499-518. |
6 | NELSON D L, COX M M. Lehninger principles of biochemistry [M]. 7th ed. New York: W H Freeman and Company, 2017: 2711-2740. |
7 | WOSTEN M M. Eubacterial sigma-factors [J]. FEMS Microbiology Review, 1998, 22(3): 127-150. |
8 | PAGET M S, HELMANN J D. The Sigma70 family of sigma factors [J]. Genome Biology, 2003, 4(1): 203. |
9 | GRUBER T M, GROSS C A. Multiple sigma subunits and the partitioning of bacterial transcription space [J]. Annual Review of Microbiology, 2003, 57: 441-66. |
10 | BURGESS R R, ANTHONY L. How sigma docks to RNA polymerase and what sigma does [J]. Current Opinion in Microbiology, 2001, 4(2): 126-131. |
11 | YOUNG E, ALPER H. Synthetic biology: tools to design, build, and optimize cellular processes [J]. Journal of Biomedicine & Biotechnology, 2010, 2010: 130781. |
12 | YUKAWA H, INUI M. Corynebacterium glutamicum. Microbiology monographs [M]. Berlin Heidelberg: Springer, 2013, 23: 51-88. |
13 | ZHAO H, ZENG A P. Synthetic biology-metabolic engineering [M]. Berlin Cham: Springer, 2016, 162:21-44. |
14 | JIAO S, YU H M, SHEN Z Y. Core elements characterization of Rhodococcus promoters and development of a gradient intensity mini-pool for efficient gene expression [J]. New Biotechnology, 2018, 44: 41-49. |
15 | VERA J M, GHOSH I N, ZHANG Y P, et al. Genome-scale transcription-translation mapping reveals features of Zymomonas mobilis transcription units and promoters [J]. mSystems, 2020, 5(4): e00250-20. |
16 | ZHUO Y, ZHANG W Q, CHEN D F, et al. Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11250-11254. |
17 | COX R S, SURETTE M G, ELOWITZ M B. Programming gene expression with combinatorial promoters [J]. Molecular System Biology, 2007, 3: 145. |
18 | BLAZECK J, ALPER H. Systems metabolic engineering: genome-scale models and beyond [J]. Biotechnology Journal, 2010, 5(7): 647-659. |
19 | WANG X Y, CHEN J, QUINN P. Reprogramming microbial metabolic pathways [M]. Dordrecht: Springer Science+Business Media, 2012: 181-224. |
20 | PHAN T T, NGUYEN H D, SCHUMANN W. Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements [J]. Journal of Biotechnology, 2012, 157(1): 167-172. |
21 | JIAO S, LI X, YU H M, et al. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters [J]. Biotechnology and Bioengineering, 2017, 114: 832-842. |
22 | SONG Y F, NIKOLOFF J M, FU G, et al. Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications [J]. PLoS One, 2016, 11(7): e0158447. |
23 | SHANG X L, CHAI X, LU X M, et al. Native promoters of Corynebacterium glutamicum and its application in L-lysine production [J]. Biotechnology Letters, 2018, 40(2): 383-391. |
24 | CHOI Y J, MOREL L, LE FRANÇOIS T, et al. Novel, versatile, and tightly regulated expression system for Escherichia coli strains [J]. Applied and Environmental Microbiology, 2010, 76(15): 5058-5066. |
25 | LECOINTE F, COSTE G, SOMMER S, et al. Vectors for regulated gene expression in the radioresistant bacterium Deinococcus radiodurans [J]. Gene, 2004, 336(1): 25-35. |
26 | YANG M M, ZHANG W W, JI S Y, et al. Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system [J]. PLoS One, 2013, 8(2): e56321. |
27 | CASTILLO-HAIR S M, FUJITA M, IGOSHIN O A, et al. An engineered B. subtilis inducible promoter system with over 10 000-fold dynamic range [J]. ACS Synthetic Biology, 2019, 8: 1673-1678. |
28 | HERAI S, HASHIMOTO Y, HIGASHIBATA H, et al. Hyper-inducible expression system for streptomycetes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39): 14031-14035. |
29 | GUIZIOU S, SAUVEPLANE V, CHANG H J, et al. A part toolbox to tune genetic expression in Bacillus subtilis [J]. Nucleic Acids Research, 2016, 44(15): 7495-7508. |
30 | ZHAO M, WANG S L, TAO X Y, et al. Engineering diverse eubacteria promoters for robust gene expression in Streptomyces lividans [J]. Journal of Biotechnology, 2019, 289: 93-102. |
31 | LI T T, LI T, JI W Y, et al. Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp [J]. Biotechnology Journal, 2016, 11(2): 219-227. |
32 | SHEN R, YIN J, YE J W, et al. Promoter engineering for enhanced P(3HB-co-4HB) production by Halomonas bluephagenesis [J]. ACS Synthetic Biology, 2018, 7(8):1897-1906. |
33 | JIN L Y, NAWAB S, XIA M L, et al. Context-dependency of synthetic minimal promoters in driving gene expression: a case study [J]. Microbial Biotechnology, 2019, 12(6): 1476-1486. |
34 | JI C H, KIM J P, KANG H S. Library of synthetic Streptomyces regulatory sequences for use in promoter engineering of natural product biosynthetic gene clusters [J]. ACS Synthetic Biology, 2018, 7(8):1946-1955. |
35 | ZHOU S H,DING R P,CHEN J, et al. Obtaining a panel of cascade promoter-5′-UTR complexes in Escherichia coli [J]. ACS Synthetic Biology, 2017, 6(6): 1065-1075. |
36 | KÖBBING S, BLANK L M, WIERCKX N. Characterization of context-dependent effects on synthetic promoters [J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 551. |
37 | GILMAN J, SINGLETON C, TENNANT R K, et al. Rapid, heuristic discovery and design of promoter collections in non-model microbes for industrial applications [J]. ACS Synthetic Biology, 2019, 8(5): 1175-1186. |
38 | YANG Y F, SHEN W, HUANG J, et al. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era [J]. Biotechnology for Biofuels, 2019, 12: 52. |
39 | WANG W Y, LI Y W B, WANG Y Q, et al. Bacteriophage T7 transcription system: an enabling tool in synthetic biology [J]. Biotechnology Advances, 2018, 36(8): 2129-2137. |
40 | LUTZ R, BUJARD H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements [J]. Nucleic Acids Research, 1997, 25(6): 1203-1210. |
41 | CHENG F Y, GONG Q Y, YU H M, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum [J]. Biotechnology Journal, 2016, 11(4): 574-584. |
42 | CHENG F Y, YU H M, STEPHANOPOULOS G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid [J]. Metabolic Engineering, 2019, 55: 276-289. |
43 | 贺根和, 刘强, 李晓红, 等. 大肠杆菌鼠李糖调节子[J]. 生命科学, 2008, 20(3): 477-482. |
HE G H, LIU Q, LI X H, et al. Rhamnose regulon of Escherichia coli [J]. Chinese Bulletin of Life Sciences, 2008, 20(3): 477-482. | |
44 | MARSCHALL L, SAGMEISTER P, HERWIG C. Tunable recombinant protein expression in E. coli: promoter systems and genetic constraints [J]. Applied Microbiology and Biotechnology, 2017, 101(2): 501-512. |
45 | KIM L, MOGK A, SCHUMANN W. A xylose-inducible Bacillus subtilis integration vector and its application [J]. Gene, 1996, 181(1/2): 71-76. |
46 | TORTOSA P, DECLERCK N, DUTARTRE H, et al. Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY[J]. Molecular Microbiology, 2001, 41(6): 1381-1393. |
47 | SKERRA A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli [J]. Gene, 1994, 151(1/2): 131-135. |
48 | DELORENZO D M, HENSON W R, MOON T S. Development of chemical and metabolite sensors for Rhodococcus opacus PD630 [J]. ACS Synthetic Biology, 2017, 6(10): 1973-1978. |
49 | DONG H J, TAO W W, ZHANG Y P, et al. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: a useful tool for strain engineering [J]. Metabolic Engineering, 2012, 14(1): 59-67. |
50 | RUEGG T L, KIM E M, SIMMONS B A, et al. An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production [J]. Nature Communications, 2014, 5: 3490. |
51 | LIANG C N, XIONG D D, ZHANG Y, et al. Development of a novel uric-acid-responsive regulatory system in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2267-2275. |
52 | MIZUNASHI W, NISHIYAMA M, HORINOUCHI S, et al. Overexpression of high-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1 in recombinant Rhodococcus cells [J]. Applied Microbiology and Biotechnology, 1998, 49(5): 568-572. |
53 | TAKEDA H, HARA N, SAKAI Met al. Biphenyl-inducible promoters in a polychlorinated biphenyl-degrading bacterium, Rhodococcus sp. RHA1 [J]. Bioscience, Biotechnology and Biochemistry, 2004, 68(6): 1249-1258. |
54 | CHHIBA-GOVINDJEE V P, WESTHUYZEN C W VAN DER, BODE M L, et al. Bacterial nitrilases and their regulation [J]. Applied Microbiology and Biotechnology, 2019, 103(12): 4679-4692. |
55 | JIAO S, LI F L, YU H M, et al. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase [J]. Applied Microbiology and Biotechnology, 2020, 104(3): 1001-1012. |
56 | SHARSHARA M M, SAMAK N A, HAO X M, et al. Enhanced growth-driven stepwise inducible expression system development in haloalkaliphilic desulfurizing Thioalkalivibrio versutus [J]. Bioresource Technology, 2019, 288: 121486. |
57 | GUAN L Y, LIU Q, LI C, et al. Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis [J]. BMC Biotechnology, 2013, 13: 25-33. |
58 | RUEGG T L, PEREIRA J H, CHEN J C, et al. Jungle express is a versatile repressor system for tight transcriptional control [J]. Nature Communications, 2018, 9(1): 3617. |
59 | ROGERS J K, GUZMAN C D, TAYLOR N D, et al. Synthetic biosensors for precise gene control and real-time monitoring of metabolites [J]. Nucleic Acids Research, 2015, 43(15): 7648-7660. |
60 | KAGAWA Y, MITANI Y, YUN H Y, et al. Identification of a methanol-inducible promoter from Rhodococcus erythropolis PR4 and its use as an expression vector [J]. Journal of Bioscience and Bioengineering, 2012, 113(5): 596-603. |
61 | YANG Y F, RONG Z Y, SONG H Y, et al. Identification and characterization of ethanol-inducible promoters of Zymomonas mobilis based on omics data and dual reporter-gene system [J]. Biotechnology and Applied Biochemistry, 2020, 67(1):158-165. |
62 | HORBAL L, FEDORENKO V, LUZHETSKYY A. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria [J]. Applied Microbiology and Biotechnology, 2014, 98(20): 8641-8655. |
63 | ULUŞEKER C, TORRES-BACETE J, GARCÍA J L, et al. Quantifying dynamic mechanisms of auto-regulation in Escherichia coli with synthetic promoter in response to varying external phosphate levels [J]. Scientific Reports, 2019, 9(1): 2076. |
64 | ADLER-AGNON Z, LEU S, ZARKA A, et al. Novel promoters for constitutive and inducible expression of transgenes in the diatom Phaeodactylum tricornutum under varied nitrate availability [J]. Journal of Applied Phycology, 2018, 30(5): 2763-2772. |
65 | YU H M, SHI Y, ZHANG Y P, et al. Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly(β-hydroxybutyrate) and fermentative parameters [J]. FEMS Microbiology Letters, 2002, 214(2): 223-227. |
66 | 周大袁, 林佳辉, 李霜. 利用溶氧调控型启动子Pvgb构建产surfactin的重组枯草芽孢杆菌[J]. 生物加工过程, 2020, 18(6): 690-695. |
ZHOU D Y, LIN J H, LI S. Constructing recombinant Bacillus subtilis producing surfactin using aeration-inducible promoter Pvgb [J]. Chinese Journal of Bioprocess Engineering, 2020, 18(6): 690-695. | |
67 | HWANG H J, LEE S Y, LEE P C. Engineering and application of synthetic nar promoter for fine-tuning the expression of metabolic pathway genes in Escherichia coli [J]. Biotechnol Biofuels, 2018, 11: 103. |
68 | YIN X, SHIN H D, LI J, et al. Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger [J]. Applied and Environmental Microbiology, 2017, 83(6): e03222-16. |
69 | HARDER B J, BETTENBROCK K, KLAMT S. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli [J]. Biotechnology and Bioengineering, 2018, 115(1): 156-164. |
70 | LI W, LI H X, JI S Y, et al. Characterization of two temperature-inducible promoters newly isolated from B. subtilis [J]. Biochemical and Biophysical Research Communications, 2007, 358(4): 1148-1153. |
71 | QING G, MA L C, KHORCHID A, et al. Cold-shock induced high-yield protein production in Escherichia coli [J]. Nature Biotechnology, 2004, 22(7): 877-882. |
72 | ZHENG Y, MENG F K, ZHU Z H, et al. A tight cold-inducible switch built by coupling thermosensitive transcriptional and proteolytic regulatory parts [J]. Nucleic Acids Research, 2019, 47(21): e137. |
73 | LIU Z D, ZHANG J Z, JIN J, et al. Programming bacteria with light-sensors and applications in synthetic biology [J]. Frontiers in Microbiology, 2018, 9: 2692. |
74 | ZHAO E M, ZHANG Y, MEHL J, et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production [J]. Nature, 2018, 555: 683-687. |
75 | LALWANI M A, IP S S, CARRASCO-LÓPEZ C, et al. Optogenetic control of the lac operon for bacterial chemical and protein production [J]. Nature Chemical Biology, 2021, 17(1): 71-79. |
76 | GILMAN J, LOVE J. Synthetic promoter design for new microbial chassis [J]. Biochemical Society Transactions, 2016, 44(3): 731-737. |
77 | BARRICK D, VILLANUEBA K, CHILDS J, et al. Quantitative analysis of ribosome binding sites in E.coli [J]. Nucleic Acids Research, 1994, 22(7): 1287-1295. |
78 | TRISRIVIRAT D, HUGHES J M X, HOEVEN R, et al. Promoter engineering for microbial bio-alkane gas production [J]. Synthetic Biology, 2020, 5(1): ysaa022. |
79 | SUN H, YANG J L, SONG H. Engineering mycobacteria artificial promoters and ribosomal binding sites for enhanced sterol production [J]. Biochemical Engineering Journal, 2020, 162: 107739. |
80 | LIU R, LIU L Q, LI X, et al. Engineering yeast artificial core promoter with designated base motifs [J]. Microbial Cell Factories, 2020, 19(1): 38. |
81 | ZHANG S H, LIU D Y, MAO Z T, et al. Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum [J]. Biotechnology Letters, 2018, 40(5): 819-827. |
82 | WANG Y, WANG H C, WEI L, et al. Synthetic promoter design in Escherichia coli based on a deep generative network [J]. Nucleic Acids Research, 2020, 48(12): 6403-6412. |
83 | ÖZTÜRK S, ERGÜN B G, ÇALIK P. Double promoter expression systems for recombinant protein production by industrial microorganisms [J]. Applied Microbiology and Biotechnology, 2017, 101(20): 7459-7475. |
84 | LANDBERG J, MUNDHADA H, NIELSEN A T. An autoinducible trp-T7 expression system for production of proteins and biochemicals in Escherichia coli [J]. Biotechnology and Bioengineering, 2020, 117(5): 1513-1524. |
85 | MOREB E A, YE Z X, EFROMSON J P, et al. Media robustness and scalability of phosphate regulated promoters useful for two-stage autoinduction in E. coli [J]. ACS Synthetic Biology, 2020, 9(6): 1483-1486. |
86 | IKEGAYA R, SHINTANI M, KIMBARA K, et al. Identification of a transcriptional regulator for oligotrophy-responsive promoter in Rhodococcus erythropolis N9T-4 [J]. Bioscience, Biotechnology, and Biochemistry, 2020, 84(4): 865-868. |
87 | LIANG C N, ZHANG X X, WU J Y, et al. Dynamic control of toxic natural product biosynthesis by an artificial regulatory circuit [J]. Metabolic Engineering, 2020, 57: 239-246. |
88 | BREMPT M VAN, CLAUWAERT J, MEY F, et al. Predictive design of sigma factor-specific promoters [J]. Nature Communications, 2020, 11(1): 5822. |
89 |
ZHAO M, ZHOU S H, WU L T, et al. Model-driven promoter strength prediction based on a fine-tuned synthetic promoter library in Escherichia coli [J]. bioRxiv, 2020, DOI:10.1101/2020.06.25.170365.
doi: 10.1101/2020.06.25.170365 |
90 | KEASLING J D. Synthetic biology for synthetic chemistry [J]. ACS Chemical Biology, 2008, 3(1): 64-76. |
91 | 于慧敏,王勇. 全局转录机器工程——工业生物技术新方法[J]. 生物产业技术, 2009(4): 42-46. |
YU H M, WANG Y. Global transcriptional machinery engineering: new method in industrial biotechnology [J]. Biotechnology & Business, 2009(4): 42-46. | |
92 | JIN L Q, JIN W R, MA Z C, et al. Promoter engineering strategies for the overproduction of valuable metabolites in microbes [J]. Applied Microbiology and Biotechnology, 2019, 103(21/22): 8725-8736. |
93 | HANNIG G, MAKRIDES S C. Strategies for optimizing heterologous protein expression in Escherichia coli [J]. Trends in Biotechnology, 1998, 16: 54-60. |
94 | KEASLING J D. Gene-expression tools for the metabolic engineering of bacteria [J]. Trends in Biotechnology, 1999, 17(11): 452-460. |
95 | HENRY K K, ROSS W, MYERS K S, et al. A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29658-29668. |
96 | TANG R Q, WAGNER J M, ALPER H S, et al. Design, evolution, and characterization of a xylose biosensor in Escherichia coli using the XylR/xylO system with an expanded operating range [J]. ACS Synthetic Biology, 2020, 9(10): 2714-2722. |
97 | LI N, ZENG W Z, XU S, et al. Obtaining a series of native gradient promoter-5′-UTR sequences in Corynebacterium glutamicum ATCC 13032 [J]. Microbial Cell Factories, 2020, 19(1): 120. |
98 | 陈江楠,陈潇宁,刘心怡,等. 基于工程化盐单胞菌的下一代工业生物技术[J]. 合成生物学, 2020, 1(5): 516-527. |
CHEN J N, CHEN X N, LIU X Y, et al. Engineering Halomonas spp. for next generation industrial biotechnology (NGIB) [J]. Synthetic Biology Journal, 2020, 1(5): 516-527. | |
99 | 武耀康,刘延峰,李江华, 等. 动态调控元件及其在微生物代谢工程中的应用[J]. 化工学报, 2018, 69(1): 272-281. |
WU Y K, LIU Y F, LI J H, et al. Dynamic regulation elements and their applications in microbial metabolic engineering [J]. CIESC Journal, 2018, 69(1): 272-281. | |
100 | 钱秀娟, 陈琳, 章文明, 等. 人工多细胞体系设计与构建研究进展[J]. 合成生物学, 2020, 1(3): 267-284. |
QIAN X J, CHEN L, ZHANG W M, et al. Recent research progress in the design and construction of synthetic microbial consortia [J]. Synthetic Biology Journal, 2020, 1(3): 267-284. |
[1] | 卞佳豪, 杨广宇. 人工智能辅助的蛋白质工程[J]. 合成生物学, 2022, 3(3): 429-444. |
[2] | 冯晴晴, 张天鲛, 赵潇, 聂广军. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278. |
[3] | 胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414. |
[4] | 武伟红, 李炜, 张先恩, 崔宗强. 合成生物学与荧光成像技术[J]. 合成生物学, 2022, 3(2): 369-384. |
[5] | 施茜, 吴园园, 杨洋. DNA纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319. |
[6] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[7] | 赵晓宇, 张浩, 李雪飞, 胡政. 进化视角下的定量生物学规律与人工生命合成[J]. 合成生物学, 2022, 3(1): 6-21. |
[8] | 褚亚东, 赵宗保. 小型集成化自动移液工作站系统及应用[J]. 合成生物学, 2022, 3(1): 195-208. |
[9] | 张亭, 冷梦甜, 金帆, 袁海. 合成生物研究重大科技基础设施概述[J]. 合成生物学, 2022, 3(1): 184-194. |
[10] | 郭思敏, 叶斌, 徐飞. 美德伦理视角下的合成生物学技术伦理治理[J]. 合成生物学, 2022, 3(1): 224-237. |
[11] | 任师超, 孙秋艳, 冯旭东, 李春. 微生物细胞工厂合成五环三萜皂苷类化合物[J]. 合成生物学, 2022, 3(1): 168-183. |
[12] | 汪庆卓, 宋萍, 黄和. 合成生物技术驱动天然的真核油脂细胞工厂开发[J]. 合成生物学, 2021, 2(6): 920-941. |
[13] | 陈久洲, 王钰, 蒲伟, 郑平, 孙际宾. 5-氨基乙酰丙酸生物合成技术的发展及展望[J]. 合成生物学, 2021, 2(6): 1000-1016. |
[14] | 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战[J]. 合成生物学, 2021, 2(6): 854-862. |
[15] | 郭亮, 高聪, 柳亚迪, 陈修来, 刘立明. 大肠杆菌生产饲用氨基酸的研究进展[J]. 合成生物学, 2021, 2(6): 964-981. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||