1 |
COBB R E, CHAO R, ZHAO H M. Directed evolution: past, present, and future[J]. AIChE Journal, 2013, 59(5): 1432-1440.
|
2 |
LERNER S A, WU T T, LIN E C. Evolution of a catabolic pathway in bacteria[J]. Science, 1964, 146(3649): 1313-1315.
|
3 |
SARAC I, HOLLENSTEIN M. Terminal deoxynucleotidyl transferase in the synthesis and modification of nucleic acids[J]. ChemBioChem, 2019, 20(7): 860-871.
|
4 |
TOBIN M B, GUSTAFSSON C, HUISMAN G W. Directed evolution: the 'rational' basis for 'irrational' design[J]. Current Opinion in Structural Biology, 2000, 10(4): 421-427.
|
5 |
CHEN K, ARNOLD F H. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(12): 5618-5622.
|
6 |
STEMMER W P C. Rapid evolution of a protein in vitro by DNA shuffling[J]. Nature, 1994, 370(6488): 389-391.
|
7 |
STEMMER W P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22): 10747-10751.
|
8 |
LIEBETON K, ZONTA A, SCHIMOSSEK K, et al. Directed evolution of an enantioselective lipase[J]. Chemistry & Biology, 2000, 7(9): 709-718.
|
9 |
REETZ M T, ZONTA A, SCHIMOSSEK K, et al. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution[J]. Angewandte Chemie International Edition, 1997, 36(24): 2830-2832.
|
10 |
POREBSKI B T, BUCKLE A M. Consensus protein design[J]. Protein Engineering, Design and Selection, 2016, 29(7): 245-251.
|
11 |
STERNKE M, TRIPP K W, BARRICK D. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11275-11284.
|
12 |
PALMER B, ANGUS K, TAYLOR L, et al. Design of stability at extreme alkaline pH in streptococcal protein G[J]. Journal of Biotechnology, 2008, 134(3/4): 222-230.
|
13 |
MINAKUCHI K, MURATA D, OKUBO Y, et al. Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution[J]. Protein Science, 2013, 22(9): 1230-1238.
|
14 |
ROMERO-RIVERA A, GARCIA-BORRÀS M, OSUNA S. Computational tools for the evaluation of laboratory-engineered biocatalysts[J]. Chemical Communications, 2017, 53(2): 284-297.
|
15 |
KHERSONSKY O, LIPSH R, AVIZEMER Z, et al. Automated design of efficient and functionally diverse enzyme repertoires[J]. Molecular Cell, 2018, 72(1): 178-186.e5.
|
16 |
WEINREICH D M, DELANEY N F, DEPRISTO M A, et al. Darwinian evolution can follow only very few mutational paths to fitter proteins[J]. Science, 2006, 312(5770): 111-114.
|
17 |
LI R F, WIJMA H J, SONG L, et al. Computational redesign of enzymes for regio- and enantioselective hydroamination[J]. Nature Chemical Biology, 2018, 14(7): 664-670.
|
18 |
CUI Y L, WANG Y H, TIAN W Y, et al. Development of a versatile and efficient C-N lyase platform for asymmetric hydroamination via computational enzyme redesign[J]. Nature Catalysis, 2021, 4(5): 364-373.
|
19 |
CAPRIOTTI E, FARISELLI P, CASADIO R. A neural-network-based method for predicting protein stability changes upon single point mutations[J]. Bioinformatics, 2004, 20(S1): i63-i68.
|
20 |
CAPRIOTTI E, FARISELLI P, CASADIO R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure[J]. Nucleic Acids Research, 2005, 33(S2): W306-W310.
|
21 |
曲玉辰, 陆路, 姜世勃. 利用I-Mutant 2.0辅助设计与优化中东呼吸综合征冠状病毒融合抑制多肽[J]. 微生物与感染, 2019, 14(2): 72-81.
|
|
QU Y C, LU L, JIANG S B. Using I-Mutant2.0 to assist the design and optimization of MERS-CoV fusion inhibitory peptides[J]. Journal of Microbes and Infections, 2019, 14(2): 72-81.
|
22 |
YANG Y, DING X S, ZHU G C, et al. ProTstab - predictor for cellular protein stability[J]. BMC Genomics, 2019, 20(1): 804.
|
23 |
FARISELLI P, MARTELLI P L, SAVOJARDO C, et al. INPS: predicting the impact of non-synonymous variations on protein stability from sequence[J]. Bioinformatics, 2015, 31(17): 2816-2821.
|
24 |
LAIMER J, HOFER H, FRITZ M, et al. MAESTRO—multi agent stability prediction upon point mutations[J]. BMC Bioinformatics, 2015, 16: 116.
|
25 |
DEHOUCK Y, KWASIGROCH J M, GILIS D, et al. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality[J]. BMC Bioinformatics, 2011, 12: 151.
|
26 |
PIRES D E V, ASCHER D B, BLUNDELL T L. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach[J]. Nucleic Acids Research, 2014, 42(W1): W314-W319.
|
27 |
WORTH C L, PREISSNER R, BLUNDELL T L. SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic acids research, 2011, 39(S2): W215-W222.
|
28 |
PIRES D E V, ASCHER D B, BLUNDELL T L. mCSM: predicting the effects of mutations in proteins using graph-based signatures[J]. Bioinformatics, 2014, 30(3): 335-342.
|
29 |
The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023[J]. Nucleic Acids Research, 2023, 51(D1): D523-D531.
|
30 |
MEIER J, RAO R S, VERKUIL R, et al. Language models enable zero-shot prediction of the effects of mutations on protein function[C/OL]// Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021. 34: 29287-29303 [2023-01-03]. .
|
31 |
RAO R M, LIU J, VERKUIL R, et al. MSA transformer[C/OL]// Proceedings of the 38th International Conference on Machine Learning, PMLR,2021, 139:8844-8856 [2023-01-03]. .
|
32 |
JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
|
33 |
HSU C, VERKUIL R, LIU J, et al. Learning inverse folding from millions of predicted structures[EB/OL]. bioRxiv, 2022[2023-01-03]. .
|
34 |
JING B, EISMANN S, SURIANA P, et al. Learning from protein structure with geometric vector perceptrons[EB/OL]. arXiv, 2020: 2009.01411[2023-01-03]. .
|
35 |
ZHOU B X, LV O T Y, YI K, et al. Lightweight equivariant graph representation learning for protein engineering[C/OL]//Machine Learning for Structural Biology Workshop - NeurIPS 2022[2023-01-03]. .
|
36 |
RIESSELMAN A J, INGRAHAM J B, MARKS D S. Deep generative models of genetic variation capture the effects of mutations[J]. Nature Methods, 2018, 15(10): 816-822.
|
37 |
NIJKAMP E, RUFFOLO J, WEINSTEIN E N, et al. ProGen2: exploring the boundaries of protein language models[EB/OL]. arXiv, 2022: 2206.13517[2023-01-03]. .
|
38 |
NOTIN P, DIAS M, FRAZER J, et al. Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[C/OL]// International Conference on Machine Learning, arXiv, 2022[2023-01-03]. .
|
39 |
LU H Y, DIAZ D J, CZARNECKI N J, et al. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907): 662-667.
|
40 |
RIVES A, MEIER J, SERCU T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2016239118.
|
41 |
LUO Y N, JIANG G D, YU T H, et al. ECNet is an evolutionary context-integrated deep learning framework for protein engineering[J]. Nature Communications, 2021, 12: 5743.
|
42 |
LI M C, KANG L Q, XIONG Y, et al. SESNet: sequence-structure feature-integrated deep learning method for data-efficient protein engineering[EB/OL]. arXiv, 2022: 2301.00004[2023-01-03]. .
|
43 |
CUI Y L, CHEN Y C, LIU X Y, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3): 1340-1350.
|
44 |
ROCKLIN G J, CHIDYAUSIKU T M, GORESHNIK I, et al. Global analysis of protein folding using massively parallel design, synthesis, and testing[J]. Science, 2017, 357(6347): 168-175.
|
45 |
HUANG B, XU Y, HU X H, et al. A backbone-centred energy function of neural networks for protein design[J]. Nature, 2022, 602(7897): 523-528.
|
46 |
DOU J Y, VOROBIEVA A A, SHEFFLER W, et al. De novo design of a fluorescence-activating β-barrel[J]. Nature, 2018, 561(7724): 485-491.
|
47 |
YEH A H W, NORN C, KIPNIS Y, et al. De novo design of luciferases using deep learning[J]. Nature, 2023, 614(7949): 774-780.
|
48 |
RUSS W P, FIGLIUZZI M, STOCKER C, et al. An evolution-based model for designing chorismate mutase enzymes[J]. Science, 2020, 369(6502): 440-445.
|
49 |
REPECKA D, JAUNISKIS V, KARPUS L, et al. Expanding functional protein sequence spaces using generative adversarial networks[J]. Nature Machine Intelligence, 2021, 3(4): 324-333.
|
50 |
MADANI A, KRAUSE B, GREENE E R, et al. Large language models generate functional protein sequences across diverse families[J/OL]. Nature Biotechnology, 2023[2023-02-01]. .
|
51 |
SINAI S, WANG R, WHATLEY A, et al. AdaLead: a simple and robust adaptive greedy search algorithm for sequence design[EB/OL]. arXiv, 2020: 2010.02141[2023-01-03]. .
|
52 |
BISWAS S, KHIMULYA G, ALLEY E C, et al. Low-N protein engineering with data-efficient deep learning[J]. Nature Methods, 2021, 18(4): 389-396.
|
53 |
HU R Y, FU L H, CHEN Y C, et al. Protein engineering via Bayesian optimization-guided evolutionary algorithm and robotic experiments[J]. Briefings in Bioinformatics, 2023, 24(1): bbac570.
|
54 |
CASTRO E, GODAVARTHI A, RUBINFIEN J, et al. Transformer-based protein generation with regularized latent space optimization[J]. Nature Machine Intelligence, 2022, 4(10): 840-851.
|
55 |
LIN Z, AKIN H, RAO R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model[J]. Science, 2023, 379(6637): 1123-1130.
|