• 特约评述 •
王珂1,2, 陈文慧1, 雷春阳1, 聂舟1
收稿日期:
2025-05-07
修回日期:
2025-06-18
出版日期:
2025-06-18
通讯作者:
聂舟
作者简介:
基金资助:
WANG Ke1,2, CHEN Wenhui1, LEI Chunyang1, NIE Zhou1
Received:
2025-05-07
Revised:
2025-06-18
Online:
2025-06-18
Contact:
NIE Zhou
摘要:
CRISPR/Cas系统因其高特异性、可编程性和便捷性,已成为分子诊断领域的重要工具。本文综述了CRISPR/Cas系统的技术原理、诊断平台优化及其在精准医学中的应用进展。首先,概述了CRISPR/Cas系统的作用机制与分类,并重点讨论了CRISPR诊断技术的创新优化策略,包括基于核酸预扩增(如SHERLOCK(specific high-sensitivity enzymatic reporter unlocking)、DETECTR(DNA endonuclease targeted CRISPR trans reporter))和免扩增的检测方法。其次,探讨了CRISPR/Cas技术在感染性疾病(病原体筛查、耐药性检测)、肿瘤分子分型(癌症早筛、遗传变异分析)及非核酸标志物检测中的临床应用。最后,本文展望了该技术的未来发展方向,包括微型化设备开发、高通量智能化诊断体系构等,并分析了其在临床转化中面临的关键挑战(如灵敏度标准化、成本控制等)。通过总结目前研究,本文旨在为CRISPR/Cas技术在分子诊断领域的进一步优化和医学应用提供理论参考。
中图分类号:
王珂, 陈文慧, 雷春阳, 聂舟. CRISPR/Cas系统在分子诊断领域的应用研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-042.
WANG Ke, CHEN Wenhui, LEI Chunyang, NIE Zhou. Advances in the Application of CRISPR/Cas Systems in Molecular Diagnostics[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-042.
Cas蛋白 | 大类 | 型 | 靶标 | 反式切割活性/底物 | PAM/PFS序列 |
---|---|---|---|---|---|
Cas9[ | Class II系统 | Type II | dsDNA | 无 | 3′ GC-rich PAM |
Cas7-11[ (多亚基复合物) | Class I系统 | Type III | ssRNA | 无 | --- |
Cas12a (Cpf1)[ | Class II系统 | Type V | dsDNA/ssDNA | 有/ssDNA | 5′ AT-rich PAM |
Cas12b[ | Class II系统 | Type V | dsDNA/ssDNA | 有/ssDNA | 5′ AT-rich PAM |
Cas12f (Cas14)[ | Class II系统 | Type V | dsDNA/ssDNA | 有/ssDNA | 5′ T-rich PAM |
Cas13[ | Class II系统 | Type VI | ssRNA | 有/ssRNA | 3′ non-G-PFS |
Cas3蛋白 (多亚基复合物)[ | Class I系统 | Type I | dsDNA | 有/ssDNA | AAG |
表1 CRISPR效应蛋白的相关特征
Table 1 The relation of CRISPR/Cas system effector proteins
Cas蛋白 | 大类 | 型 | 靶标 | 反式切割活性/底物 | PAM/PFS序列 |
---|---|---|---|---|---|
Cas9[ | Class II系统 | Type II | dsDNA | 无 | 3′ GC-rich PAM |
Cas7-11[ (多亚基复合物) | Class I系统 | Type III | ssRNA | 无 | --- |
Cas12a (Cpf1)[ | Class II系统 | Type V | dsDNA/ssDNA | 有/ssDNA | 5′ AT-rich PAM |
Cas12b[ | Class II系统 | Type V | dsDNA/ssDNA | 有/ssDNA | 5′ AT-rich PAM |
Cas12f (Cas14)[ | Class II系统 | Type V | dsDNA/ssDNA | 有/ssDNA | 5′ T-rich PAM |
Cas13[ | Class II系统 | Type VI | ssRNA | 有/ssRNA | 3′ non-G-PFS |
Cas3蛋白 (多亚基复合物)[ | Class I系统 | Type I | dsDNA | 有/ssDNA | AAG |
图4 CRISPR/Cas系统用于感染性疾病精准诊断的检测方法原理图
Fig. 4 Schematic diagram of detection methods using the CRISPR/Cas system for precise diagnosis of infectious diseases
1 | MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants [J]. Nature Reviews Microbiology, 2020, 18(2): 67-83. |
2 | ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13 [J]. Nature, 2017, 550(7675): 280-284. |
3 | ZHOU W, HU L, YING L, et al. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection [J]. Nature Communications, 2018, 9(1): 5012. |
4 | HU C, VAN BELJOUW S P B, NAM K H, et al. Craspase is a CRISPR RNA-guided, RNA-activated protease [J]. Science, 2022, 377(6612): 1278-1285. |
5 | STRECKER J, DEMIRCIOGLU F E, LI D, et al. RNA-activated protein cleavage with a CRISPR-associated endopeptidase [J]. Science, 2022, 378(6622): 874-881. |
6 | YU G, WANG X, ZHANG Y, et al. Structure and function of a bacterial type III-E CRISPR–Cas7-11 complex [J]. Nature Microbiology, 2022, 7(12): 2078-2088. |
7 | CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J]. Science, 2018, 360(6387): 436-439. |
8 | TONG X, ZHANG K, HAN Y, et al. Fast and sensitive CRISPR detection by minimized interference of target amplification [J]. Nature Chemical Biology, 2024, 20(7): 885-893. |
9 | HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes [J]. Science, 2018, 362(6416): 839-842. |
10 | KARVELIS T, BIGELYTE G, YOUNG J K, et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage [J]. Nucleic Acids Research, 2020, 48(9): 5016-5023. |
11 | WU Z, ZHANG Y, YU H, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease [J]. Nature Chemical Biology, 2021, 17(11): 1132-1138. |
12 | WANG Y, WANG Y, PAN D, et al. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease [J]. Cell Reports, 2022, 40(13):111418. |
13 | WANG Y, TANG N, JI Q. Systematic trans-Activity Comparison of Several Reported Cas12f Nucleases [J]. Chinese Journal of Chemistry, 2025, 43(12): 1339-1347. |
14 | GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336): 438-442. |
15 | YOSHIMI K, TAKESHITA K, YAMAYOSHI S, et al. CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus [J]. iScience, 2022, 25(2): 103830. |
16 | CHEN J, CHEN Y, HUANG L, et al. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding [J]. Nature Biotechnology, 2025, 43(4): 558-568. |
17 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-821. |
18 | ZHAN T, RINDTORFF N, BETGE J, et al. CRISPR/Cas9 for cancer research and therapy [J], Seminars in Cancer Biology, 2019, 55: 106-119. |
19 | GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 [J]. Science, 2018, 360(6387): 439-444. |
20 | KNOTT G J, EAST-SELETSKY A, COFSKY J C, et al. Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme [J]. Nature Structural & Molecular Biology, 2017, 24(10): 825-833. |
21 | WANG B, ZHANG T, YIN J, et al. Structural basis for self-cleavage prevention by tag: anti-tag pairing complementarity in type VI Cas13 CRISPR systems [J]. Molecular Cell, 2021, 81(5): 1100-1115. e5. |
22 | LI L, LI S, WU N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation [J]. ACS Synthetic Biology, 2019, 8(10): 2228-2237. |
23 | PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components [J]. Cell, 2016, 165(5): 1255-1266. |
24 | LI H, XIE Y, CHEN F, et al. Amplification-free CRISPR/Cas detection technology: challenges, strategies, and perspectives [J]. Chemical Society Reviews, 2023, 52(1): 361-382. |
25 | MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13 [J]. Science, 2018, 360(6387): 444-448. |
26 | ZAGHLOUL H, EL-SHAHAT M J W J O H. Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis [J]. World Journal of Hepatology, 2014, 6(12): 916-922. |
27 | WAN Y, LI S, XU W, et al. Terminal chemical modifications of crRNAs enable improvement in the performance of CRISPR-Cas for point-of-care nucleic acid detection [J]. Analytical Chemistry, 2024, 96(41): 16346-16354. |
28 | YANG H, EREMEEVA E, ABRAMOV M, et al. CRISPR-Cas9 recognition of enzymatically synthesized base-modified nucleic acids [J]. Nucleic Acids Research, 2023, 51(4): 1501-1511. |
29 | HU M, QIU Z, BI Z, et al. Photocontrolled crRNA activation enables robust CRISPR-Cas12a diagnostics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(26): e2202034119. |
30 | ROSSETTI M, MERLO R, BAGHERI N, et al. Enhancement of CRISPR/Cas12a trans-cleavage activity using hairpin DNA reporters [J]. Nucleic Acids Research, 2022, 50(14): 8377-8391. |
31 | HU M, LIU R, QIU Z, et al. Light‐start CRISPR‐Cas12a reaction with caged crRNA enables rapid and sensitive nucleic acid detection [J]. Angewandte Chemie International Edition, 2023, 62, e202300663. |
32 | CHEN D, HUANG W, ZHANG Y, et al. CRISPR-mediated profiling of viral RNA at single‐nucleotide resolution [J]. Angewandte Chemie International Edition, 2023, 62(30): e202304298. |
33 | TIAN T, SHU B, JIANG Y, et al. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics [J]. ACS Nano, 2020, 15(1): 1167-1178. |
34 | YUE H, SHU B, TIAN T, et al. Droplet Cas12a assay enables DNA quantification from unamplified samples at the single-molecule level [J]. Nano Letters, 2021, 21(11): 4643-4653. |
35 | SHINODA H, IIDA T, MAKINO A, et al. Automated amplification-free digital RNA detection platform for rapid and sensitive SARS-CoV-2 diagnosis [J]. Communications Biology, 2022, 5(1): 473. |
36 | BROTO M, KAMINSKI M M, ADRIANUS C, et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs [J]. Nature Nanotechnology, 2022, 17(10): 1120-1126. |
37 | LIU P, LIN Y, ZHUO X, et al. Universal crRNA Acylation Strategy for Robust Photo-Initiated One-Pot CRISPR-Cas12a Nucleic Acid Diagnostics [J]. Angewandte Chemie International Edition, 2024, 63(23): e202401486. |
38 | CHEN Y, XU X, WANG J, et al. Photoactivatable CRISPR/Cas12a Strategy for One-Pot DETECTR Molecular Diagnosis [J]. Analytical Chemistry, 2022, 94(27): 9724-9731. |
39 | SHI K, XIE S, TIAN R, et al. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics [J]. Science Advances, 2021, 7(5): eabc7802 |
40 | SUN K, PU L, CHEN C, et al. An autocatalytic CRISPR-Cas amplification effect propelled by the LNA-modified split activators for DNA sensing [J]. Nucleic Acids Research, 2024, 52(7): e39-e39. |
41 | LIM J, VAN A B, KOPROWSKI K, et al. Amplification-free, OR-gated CRISPR-Cascade reaction for pathogen detection in blood samples [J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122(11): e2420166122. |
42 | TANG Y, GAO L, FENG W, et al. The CRISPR-Cas toolbox for analytical and diagnostic assay development [J]. Chemical Society Reviews, 2021, 50(21): 11844-11869. |
43 | BROUGHTON J P, DENG X, YU G, et al. CRISPR-Cas12-based detection of SARS-CoV-2 [J]. Nature Biotechnology, 2020, 38(7): 870-874. |
44 | JOUNG J, LADHA A, SAITO M, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing [J]. New England Journal of Medicine, 2020, 383(15): 1492-1494. |
45 | JOUNG J, LADHA A, SAITO M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics [J]. MedRxiv, 2020. |
46 | WELCH N L, ZHU M, HUA C, et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants [J]. Nature Medicine, 2022, 28(5): 1083-1094. |
47 | YAN M-Y, ZHENG D, LI S-S, et al. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in Mycobacterium tuberculosis[J]. Science Advances, 2022, 8(47): eadd5907. |
48 | CHEN W, LUO H, ZENG L, et al. A suite of PCR-LwCas13a assays for detection and genotyping of Treponema pallidum in clinical samples [J]. Nature Communications, 2022, 13(1): 4671. |
49 | ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13 [J]. Nature, 2020, 582(7811): 277-282. |
50 | JAHR S, HENTZE H, ENGLISCH S, et al. DNA Fragments in the Blood Plasma of Cancer Patients: Quantitations and Evidence for Their Origin from Apoptotic and Necrotic Cells1 [J]. Cancer Research, 2001, 61(4): 1659-1665. |
51 | UNDERHILL H R, KITZMAN J O, HELLWIG S, et al. Fragment Length of Circulating Tumor DNA [J]. PLoS Genetics, 2016, 12(7): e1006162. |
52 | MERKER J D, OXNARD G R, COMPTON C, et al. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review [J]. Archives of Pathology & Laboratory Medicine, 2018, 142(10): 1242-1253. |
53 | DONG J, LI X, DENG L, et al. CRISPR/Cas12a cleavage-mediated isothermal amplification lights up the dimeric G-quadruplex signal unit for ultrasensitive and label-free detection of circulating tumor DNA [J]. Sensors and Actuators B: Chemical, 2024, 404: 135292. |
54 | ZHAO X, LIU W, QU R, et al. Target-activated CRISPR/Cas12a recognize multifunctional G-quadruplex and dual fluorescent indicators enable rapid non-extraction analysis of circulating tumor DNA in breast cancer [J]. Sensors and Actuators B: Chemical, 2025, 430: 137372. |
55 | PENG S, TAN Z, CHEN S, et al. Integrating CRISPR-Cas12a with a DNA circuit as a generic sensing platform for amplified detection of microRNA [J]. Chemical Science, 2020, 11(28): 7362-7368. |
56 | XIE Z, ZHAO S, DENG R, et al. Logic-Measurer: A Multienzyme-Assisted Ultrasensitive Circuit for Logical Detection of Exosomal MicroRNAs [J]. ACS Nano, 2025, 19(12): 12222-12236. |
57 | KIM V N. MicroRNA biogenesis: coordinated cropping and dicing [J]. Nature Reviews Molecular Cell Biology, 2005, 6(5): 376-385. |
58 | CALURA E, FRUSCIO R, PARACCHINI L, et al. miRNA Landscape in Stage I Epithelial Ovarian Cancer Defines the Histotype Specificities [J]. Clinical Cancer Research, 2013, 19(15): 4114-4123. |
59 | ZHENG H, ZHANG L, ZHAO Y, et al. Plasma miRNAs as Diagnostic and Prognostic Biomarkers for Ovarian Cancer [J]. PLoS One, 2013, 8(11): e77853. |
60 | MILANEZ-ALMEIDA P, MARTINS A J, GERMAIN R N, et al. Cancer prognosis with shallow tumor RNA sequencing [J]. Nature Medicine, 2020, 26(2): 188-192. |
61 | TIAN B, MINERO GABRIEL ANTONIO S, FOCK J, et al. CRISPR-Cas12a based internal negative control for nonspecific products of exponential rolling circle amplification [J]. Nucleic Acids Research, 2020, 48(5): e30-e30. |
62 | XING S, LU Z, HUANG Q, et al. An ultrasensitive hybridization chain reaction-amplified CRISPR-Cas12a aptasensor for extracellular vesicle surface protein quantification [J]. Theranostics, 2020, 10(22): 10262-10273. |
63 | ZHANG J, GUAN M, MA C, et al. Highly Effective Detection of Exosomal miRNAs in Plasma Using Liposome-Mediated Transfection CRISPR/Cas13a [J]. ACS Sensors, 2023, 8(2): 565-575. |
64 | YANG Q, DONG M-J, XU J, et al. CRISPR/RNA Aptamer System Activated by an AND Logic Gate for Biomarker-Driven Theranostics [J]. Journal of the American Chemical Society, 2025, 147(1): 169-180. |
65 | YAN H, WEN Y, TIAN Z, et al. A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs [J]. Nature Biomedical Engineering, 2023, 7(12): 1583-1601. |
66 | JIA Z, MAGHAYDAH Y, ZDANYS K, et al. CRISPR-Powered Aptasensor for Diagnostics of Alzheimer's Disease [J]. ACS Sensors, 2024, 9(1): 398-405. |
67 | FENG Z-Y, LIU R, LI X, et al. Harnessing the CRISPR-Cas13d System for Protein Detection by Dual-Aptamer-Based Transcription Amplification [J]. Chemistry-A European Journal, 2023, 29(10): e202202693. |
68 | LIU F, CHEN R, SONG W, et al. Modular Combination of Proteolysis-Responsive Transcription and Spherical Nucleic Acids for Smartphone-Based Colorimetric Detection of Protease Biomarkers [J]. Analytical Chemistry, 2021, 93(7): 3517-3525. |
69 | DENG F, LI Y, QIAO L, et al. A CRISPR/Cas12a-assisted on-fibre immunosensor for ultrasensitive small protein detection in complex biological samples [J]. Analytica Chimica Acta, 2022, 1192: 339351. |
70 | AINSWORTH M, ANDERSSON M, AUCKLAND K, et al. Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison [J]. The Lancet Infectious diseases, 2020, 20(12): 1390-1400. |
71 | GEURTSVANKESSEL C H, OKBA N M A, IGLOI Z, et al. An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment [J]. Nature Communications, 2020, 11(1): 3436. |
72 | RHOADS D D, CHERIAN S S, ROMAN K, et al. Comparison of Abbott ID Now, DiaSorin Simplexa, and CDC FDA Emergency Use Authorization Methods for the Detection of SARS-CoV-2 from Nasopharyngeal and Nasal Swabs from Individuals Diagnosed with COVID-19 [J]. Journal of Clinical Microbiology, 2020, 58(8): e00760-20. |
73 | WHITMAN J D, HIATT J, MOWERY C T, et al. Evaluation of SARS-CoV-2 serology assays reveals a range of test performance [J]. Nature Biotechnology, 2020, 38(10): 1174-1183. |
74 | ELLEDGE S K, ZHOU X X, BYRNES J R, et al. Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection [J]. Nature Biotechnology, 2021, 39(8): 928-935. |
75 | YAO Z, DRECUN L, ABOUALIZADEH F, et al. A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies [J]. Nature Communications, 2021, 12(1): 1806. |
76 | LONG Q-X, LIU B-Z, DENG H-J, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19 [J]. Nature Medicine, 2020, 26(6): 845-848. |
77 | AGNOLON V, CONTATO A, MENEGHELLO A, et al. ELISA assay employing epitope-specific monoclonal antibodies to quantify circulating HER2 with potential application in monitoring cancer patients undergoing therapy with trastuzumab [J]. Scientific Reports, 2020, 10(1): 3016. |
78 | ZHANG W, RONG-HUI D, BEI L, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes [J]. Emerging Microbes & Infections, 2020, 9(1): 386-389. |
79 | ACHARYA A P, NAFISI P M, GARDNER A, et al. A fluorescent peroxidase probe increases the sensitivity of commercial ELISAs by two orders of magnitude [J]. Chemical Communications, 2013, 49(88): 10379-10381. |
80 | CARTER Q L, DOTZLAF J, SWEARINGEN C, et al. Development and characterization of a novel ELISA based assay for the quantitation of sub-nanomolar levels of neoepitope exposed NITEGE-containing aggrecan fragments [J]. Journal of Immunological Methods, 2007, 328(1): 162-168. |
81 | TANG Y, SONG T, GAO L, et al. A CRISPR-based ultrasensitive assay detects attomolar concentrations of SARS-CoV-2 antibodies in clinical samples [J]. Nature Communications, 2022, 13(1): 4667. |
82 | LIANG M, LI Z, WANG W, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules [J]. Nature Communications, 2019, 10(1): 3672. |
83 | ZHANG C, YAO H, MA Q, et al. Ultrasensitive glucose detection from tears and saliva through integrating a glucose oxidase-coupled DNAzyme and CRISPR-Cas12a [J]. Analyst, 2021, 146(21): 6576-6581. |
84 | WHEATLEY M S, WANG Q, WEI W, et al. Cas12a-Based Diagnostics for Potato Purple Top Disease Complex Associated with Infection by ‘Candidatus Phytoplasma trifolii’-Related Strains [J]. Plant Disease, 2022, 106(8): 2039-2045. |
85 | AMAN R, MAHAS A, MARSIC T, et al. Efficient, rapid, and sensitive detection of plant RNA viruses with one-pot RT-RPA-CRISPR/Cas12a assay [J]. Frontiers in Microbiology, 2020, 11: 610872. |
86 | MARQUéS M-C, SáNCHEZ-VICENTE J, RUIZ R, et al. Diagnostics of Infections Produced by the Plant Viruses TMV, TEV, and PVX with CRISPR-Cas12 and CRISPR-Cas13 [J]. ACS Synthetic Biology, 2022, 11(7): 2384-2393. |
87 | MAHAS A, HASSAN N, AMAN R, et al. LAMP-Coupled CRISPR-Cas12a Module for Rapid and Sensitive Detection of Plant DNA Viruses [J]. Viruses, 2021, 13(3): 466. |
88 | RAMACHANDRAN V, WEILAND J J, BOLTON M D J F I M. CRISPR-based isothermal next-generation diagnostic method for virus detection in sugarbeet [J]. Frontiers in Microbiology, 2021, 12: 679994. |
89 | KANG H, PENG Y, HUA K, et al. Rapid Detection of Wheat Blast Pathogen Magnaporthe oryzae Triticum Pathotype Using Genome-Specific Primers and Cas12a-mediated Technology [J]. Engineering, 2021, 7(9): 1326-1335. |
90 | GONG X-Y, WANG Z-H, BASHIR M, et al. Recent application of CRISPR/Cas in plant disease detection [J]. TrAC Trends in Analytical Chemistry, 2025, 189: 118251. |
91 | LIU G. Advancing CRISPR/Cas Biosensing with Integrated Devices [J]. ACS Sensors, 2025, 10(2): 575-576. |
92 | LI X, WANG T, LIU X, et al. Advances of engineered microfluidic biosensors via CRISPR/Cas in bacteria and virus monitoring [J]. Chemical Engineering Journal, 2024, 491: 152038. |
93 | LI Z, UNO N, DING X, et al. Bioinspired CRISPR-Mediated Cascade Reaction Biosensor for Molecular Detection of HIV Using a Glucose Meter [J]. ACS Nano, 2023, 17(4): 3966-3975. |
94 | GE H, FENG J, HUANG L, et al. Development of a highly sensitive, high-throughput and automated CRISPR-based device for the contamination-free pathogen detection [J]. Biosensors and Bioelectronics, 2025, 278: 117323. |
95 | TANG Y, QI L, LIU Y, et al. CLIPON: a CRISPR-enabled strategy that turns commercial pregnancy test strips into general Point-of-Need test devices [J]. Angewandte Chemie International Edition, 2022, 61, e202115907. |
96 | WANG Y, CHEN H, LIN K, et al. Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device [J]. Nature Communications., 2024, 15(1): 3279. |
97 | NGUYEN P Q, SOENKSEN L R, DONGHIA N M, et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection [J]. Nature Biotechnology, 2021, 39(11): 1366-1374. |
98 | JI M, XIA Y, LOO J, et al. Automated multiplex nucleic acid tests for rapid detection of SARS-CoV-2, influenza A and B infection with direct reverse-transcription quantitative PCR (dirRT-qPCR) assay in a centrifugal microfluidic platform [J]. RSC Advances, 2020, 10(56): 34088-34098. |
99 | LIN Z, ZOU Z, PU Z, et al. Application of microfluidic technologies on COVID-19 diagnosis and drug discovery [J]. Acta Pharmaceutica Sinica B, 2023, 13(7): 2877-2896. |
100 | CHEN Y, ZONG N, YE F, et al. Dual-CRISPR/Cas12a-Assisted RT-RAA for Ultrasensitive SARS-CoV-2 Detection on Automated Centrifugal Microfluidics [J]. Analytical Chemistry, 2022, 94(27): 9603-9609. |
101 | LIM J, AHN J W, MAENG I, et al. TwinDemic detection: A non-enzymatic signal amplification system for on-site detection of multiple respiratory viruses [J]. Sensors and Actuators B: Chemical, 2025, 424: 136933. |
102 | NGUYEN H Q, NGUYEN V D, PHAN V M, et al. Development of a self-contained microfluidic chip and an internet-of-things-based point-of-care device for automated identification of respiratory viruses [J]. Lab on a Chip, 2024, 24(9): 2485-2496. |
103 | NGUYEN P Q M, WANG M, MARIA N ANN, et al. Modular micro-PCR system for the onsite rapid diagnosis of COVID-19 [J]. Microsystems & Nanoengineering, 2022, 8(1): 82. |
104 | SHAN X, GONG F, YANG Y, et al. Nucleic Acid Amplification-Free Digital Detection Method for SARS-CoV-2 RNA Based on Droplet Microfluidics and CRISPR-Cas13a [J]. Analytical Chemistry, 2023, 95(45): 16489-16495. |
105 | PENG R, LU Z, LIU M, et al. RT-RPA-assisted CRISPR/Cas12a for rapid and multiplex detection of respiratory infectious viruses based on centrifugal microfluidics [J]. Sensors and Actuators B: Chemical, 2024, 399: 134838. |
106 | CHEN J, YANG D, JI D, et al. A Fully Automated Point-of-Care Device Using Organic Electrochemical Transistor-Enhanced CRISPR/Cas12a for Amplification-Free Nucleic Acid Detection [J]. Advanced Functional Materials, 2025: 2420701. |
107 | XU J, SUO W, GOULEV Y, et al. Handheld Microfluidic Filtration Platform Enables Rapid, Low-Cost, and Robust Self-Testing of SARS-CoV-2 Virus [J]. Small, 2021, 17(52): e2104009. |
108 | WANG D, WANG X, YE F, et al. An Integrated Amplification-Free Digital CRISPR/Cas-Assisted Assay for Single Molecule Detection of RNA [J]. ACS Nano, 2023, 17(8): 7250-7256. |
109 | YIN B, WAN X, SOHAN A S M M F, et al. Microfluidics-Based POCT for SARS-CoV-2 Diagnostics [J]. Micromachines, 2022, 13(8): 1238. |
110 | LI Z, DING X, YIN K, et al. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system [J]. Biosensors and Bioelectronics, 2022, 199: 113865. |
111 | FU Q, TU Y, CHENG L, et al. A fully-enclosed prototype ‘pen’ for rapid detection of SARS-CoV-2 based on RT-RPA with dipstick assay at point-of-care testing [J]. Sensors and Actuators B: Chemical, 2023, 383: 133531. |
112 | XIAO Y, ZHOU M, LIU C, et al. Fully integrated and automated centrifugal microfluidic chip for point-of-care multiplexed molecular diagnostics [J]. Biosensors and Bioelectronics, 2024, 255: 116240. |
113 | LI P, XIONG H, YANG B, et al. Recent progress in CRISPR-based microfluidic assays and applications [J]. TrAC Trends in Analytical Chemistry, 2022, 157: 116812. |
114 | CUI J Q, LIU F X, PARK H, et al. Droplet digital recombinase polymerase amplification (ddRPA) reaction unlocking via picoinjection [J]. Biosensors and Bioelectronics, 2022, 202: 114019. |
115 | LIU F X, CUI J Q, PARK H, et al. Isothermal Background-Free Nucleic Acid Quantification by a One-Pot Cas13a Assay Using Droplet Microfluidics [J]. Analytical Chemistry, 2022, 94(15): 5883-5892. |
116 | ZHANG L, WANG H, YANG S, et al. High-Throughput and Integrated CRISPR/Cas12a-Based Molecular Diagnosis Using a Deep Learning Enabled Microfluidic System [J]. ACS Nano, 2024, 18(35): 24236-24251. |
117 | LI X, LIU M, MEN D, et al. Rapid, portable, and sensitive detection of CaMV35S by RPA-CRISPR/Cas12a-G4 colorimetric assays with high accuracy deep learning object recognition and classification [J]. Talanta, 2024, 278: 126441. |
118 | ZHAO J, KONG D, ZHANG G, et al. An Efficient CRISPR/Cas Cooperative Shearing Platform for Clinical Diagnostics Applications [J]. Angewandte Chemie International Edition, 2024, 63(52): e202411705. |
119 | HUANG B, GUO L, YIN H, et al. Deep learning enhancing guide RNA design for CRISPR/Cas12a-based diagnostics [J]. Imeta, 2024, 3(4): e214. |
120 | H-H WESSELS, STIRN A, MéNDEZ-MANCILLA A, et al. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning [J]. Nature Biotechnology, 2024, 42(4): 628-637. |
121 | XU T, ZHANG Y, LI S, et al. Deep Learning-Enhanced Hand-Driven Microfluidic Chip for Multiplexed Nucleic Acid Detection Based on RPA/CRISPR [J]. Advanced Science, 2025, 2414918. |
122 | LI Z, ZHAO W, MA S, et al. A chemical-enhanced system for CRISPR-Based nucleic acid detection [J]. Biosensors and Bioelectronics, 2021, 192: 113493. |
123 | MANTENA S, PILLAI P P, PETROS B A, et al. Model-directed generation of artificial CRISPR-Cas13a guide RNA sequences improves nucleic acid detection [J]. Nature Biotechnology, 2024, doi: 10.1038/s41587-024-02422-w . |
124 | HUANG Z, LYON C J, WANG J, et al. CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications [J]. Advanced Science, 2023, 10(20): 2301697. |
125 | WENG Z, YOU Z, YANG J, et al. CRISPR-Cas Biochemistry and CRISPR-Based Molecular Diagnostics [J]. Angewandte Chemie International Edition, 2023, 62(17): e202214987. |
126 | ZHOU T, SHEN G, ZHONG L, et al. crRNA array-mediated CRISPR/Cas12a coupling with dual RPA for highly sensitive detection of Streptomyces aureofaciens Tü117 from hypertension with multi-signal output [J]. Biosensors and Bioelectronics, 2025, 282: 117493. |
127 | MAO Z, CHEN R, HUANG L, et al. CRISPR analysis based on Pt@MOF dual-modal signal for multichannel fluorescence and visual detection of norovirus [J]. Biosensors and Bioelectronics, 2025, 273: 117153. |
128 | HU M, YUAN C, TIAN T, et al. Single-Step, Salt-Aging-Free, and Thiol-Free Freezing Construction of AuNP-Based Bioprobes for Advancing CRISPR-Based Diagnostics [J]. Journal of the American Chemical Society, 2020, 142(16): 7506-7513. |
129 | XIONG E, JIANG L, TIAN T, et al. Simultaneous Dual-Gene Diagnosis of SARS-CoV-2 Based on CRISPR/Cas9-Mediated Lateral Flow Assay [J]. Angewandte Chemie International Edition, 2021, 60(10): 5307-5315. |
130 | ABUDAYYEH O O, GOOTENBERG J S. CRISPR diagnostics [J]. Science, 2021, 372(6545): 914-915. |
131 | ZUO X, FAN C, CHEN H-Y. Biosensing: CRISPR-powered diagnostics [J]. Nature Biomedical Engineering, 2017, 1(6): 0091. |
132 | 杜瑶, 高宏丹, 刘家坤 等. CRISPR-Cas系统在病原核酸检测中的研究进展[J]. 合成生物学, 2024, 5(1): 202-216. |
DU Y, GAO H D, LIU J K, L, et al. Research progress of the CRISPR-Cas system in the detecting pathogen nucleic acids [J]. Synthetic Biology Journal, 2024, 5(1): 202-216. | |
133 | 李金成, 肖美娇, 陈渝萍. 基于CRISPR/Cas的体外核酸检测体系的研究进展 [J]. 中国生物工程杂志, 2024,44(9): 73-87. |
LI J C, XIAO M J, CHEN Y P. Progress in in Vitro CRISPR/Cas-based Nucleic Acid Detection [J]. China Biotechnology, 2024, 44(9): 73-87. | |
134 | PACESA M, PELEA O, JINEK M. Past, present, and future of CRISPR genome editing technologies [J]. Cell, 2024, 187(5): 1076-1100. |
135 | TENG F, GUO L, CUI T, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity [J]. Genome Biology, 2019, 20(1): 132. |
136 | CAO L, WANG Z, LEI C, et al. Engineered CRISPR/Cas Ribonucleoproteins for Enhanced Biosensing and Bioimaging [J]. Analytical Chemistry, 2025, 97(11): 5866-5879. |
137 | GUAN X, YANG R, ZHANG J, et al. Programmable Multiplexed Nucleic Acid Detection by Harnessing Specificity Defect of CRISPR-Cas12a [J]. Advanced Science, 2025, 12(4): 2411021. |
138 | MOLINA VARGAS ADRIAN M, SINHA S, OSBORN R, et al. New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity [J]. Nucleic Acids Research, 2023, 52(2): 921-939. |
139 | YE X, WU H, LIU J, et al. One-pot diagnostic methods based on CRISPR/Cas and Argonaute nucleases: strategies and perspectives [J]. Trends in Biotechnology, 2024, 42(11): 1410-1426. |
140 | DING X, YIN K, LI Z, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay [J]. Nature Communications, 2020, 11(1): 4711. |
[1] | 林继聪, 邹根, 刘宏民, 魏勇军. CRISPR/Cas基因组编辑技术在丝状真菌次级代谢产物合成中的应用[J]. 合成生物学, 2023, 4(4): 738-755. |
[2] | 龚仕涛, 王宇, 陈宇庭. CRISPR/Cas9及其衍生编辑器在衰老研究中的应用进展[J]. 合成生物学, 2022, 3(1): 66-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||