合成生物学

• 研究论文 •    

电催化还原CO2耦合代谢工程改造解脂耶氏酵母实现高效异戊二烯生物合成

兰云龙1,2,3, 李嵩1,2,3, 张伟1,2,3, 常允蕴1,2,3, 刘艳辉1,2,3   

  1. 1.绿色生物制造全国重点实验室,北京 100029
    2.北京化工大学国家能源生物炼制研发中心,北京 100029
    3.北京化工大学生命科学与技术学院,北京 100029
  • 收稿日期:2025-05-19 修回日期:2025-09-15
  • 通讯作者: 刘艳辉
  • 作者简介:兰云龙,男(1998—),硕士研究生,主要研究方向为代谢工程。E-mail:lanyunlong@guangx.picc.com.cn
    李嵩,男(2001—),硕士研究生,主要研究方向为代谢工程。E-mail:1144067063@qq.com
    刘艳辉,女(1979—),博士,副教授,研究方向主要集中于酶工程及代谢工程,获得多项研究成果。发表学术论文十余篇。E-mail:liuyh@mail.buct.edu.cn
  • 基金资助:
    重点新材料研发及应用国家科技重大专项(2025ZD0614900)

Electrocatalytic CO2 Reduction Coupled with Metabolic Engineering of Yarrowia lipolytica for Efficient Isoprene Biosynthesis

LAN Yunlong1,2,3, LI Song1,2,3, ZHANG Wei1,2,3, CHANG Yunyun1,2,3, LIU Yanhui1,2,3   

  1. 1.State Key Laboratory of Green Biomanufacturing,Beijing University of Chemical Technology,Beijing 100049,China
    2.National Energy Biorefinery R&D Center,Beijing University of Chemical Technology,Beijing 100049,China
    3.College of Life Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China
  • Received:2025-05-19 Revised:2025-09-15
  • Contact: LIU Yanhui

摘要:

生物合成技术因其绿色可持续特性,成为替代传统石化工艺的重要方向。本研究通过电催化还原CO₂与代谢工程改造解脂耶氏酵母相结合的策略,实现了高效异戊二烯的生物合成。首先,在解脂耶氏酵母中异源表达不同来源的异戊二烯合酶,筛选出葛根来源的异戊二烯合酶,异戊二烯产量为560 μg/L。随后,通过强化甲羟戊酸途径关键基因erg10、erg12、erg13、erg8、erg19、thmgr、idi及下调竞争基因erg20,构建工程菌株Misps13,摇瓶发酵异戊二烯滴度提高至12.23 mg/L。进一步整合电催化-微生物耦合系统,利用自组装纳米材料L-Bi-sh-H₂O和L-Cu-sh-3将CO₂高效转化为甲酸和乙酸,其法拉第效率分别为88.67%和50.14%。在Misps13中引入ACS与FDH模块,使工程菌Misps1315能够利用电催化合成的甲酸和乙酸,增强胞内乙酰辅酶A和NAD(P)H供应。通过响应曲面法优化外源甲酸和乙酸添加量,其中甲酸2.8 g/L、乙酸6.5 g/L,最终实现异戊二烯滴度32.14 mg/L,较基础菌株提升2.6倍。本研究为生物-电化学协同制造高值化合物提供了新范式。

关键词: 异戊二烯, 解脂耶氏酵母, 甲羟戊酸途径, 弱化竞争途径, CO2电还原反应

Abstract:

Isoprene is a valuable platform chemical essential for manufacturing synthetic rubber, elastomers, and specialty materials, yet its conventional production depends heavily on petroleum resources with significant carbon emissions. Here, we present an innovative bio-electrocatalytic process that synergistically combines CO2 electroreduction with metabolically engineered Yarrowia lipolytica for sustainable isoprene production. We began by screening several plant-derived isoprene synthases and identified the enzyme from Pueraria lobata (Isps-Pu) as the most effective in this yeast host, yielding initial production of 560 μg/L. Subsequent rational metabolic engineering involved systematic overexpression of the mevalonate pathway genes, including erg10, erg12, erg13, erg8, erg19, thmgr, and idi, via iterative genomic integration. Crucially, competitive metabolic flux was reduced by replacing the native promoter of erg20 with the weak promoter PKI1, resulting in a significantly improved isoprene titer of 12.23 mg/L.To establish an efficient electrocatalytic module, we systematically developed and characterized multiple nanomaterials for CO₂ reduction. For formate production, bismuth-based electrodes (L-Bi-sh-C and L-Bi-sh-H₂O) were synthesized through distinct self-assembly and thermal treatment pathways. Comparative analysis revealed that L-Bi-sh-H2O, prepared via hydrothermal treatment, demonstrated superior performance with a remarkable Faradaic efficiency of 88.67% for formate at -1.8 V versus Ag/AgCl. For acetate production, we engineered a series of copper-based catalysts (L-Cu-sh-3, L-Cu-sh-3-H₂O, L-Cu-sh-EtOH, and L-Cu-sh-EtOH-H2O) using different solvent systems and processing methods. Among these, L-Cu-sh-3 electrode synthesized in acetonitrile/methanol/tetrahydrofuran solvent mixture exhibited optimal performance, achieving 50.14% Faradaic efficiency for acetate at -0.8 V.The integration of these electrocatalytic components with biological conversion was achieved by introducing Saccharomyces cerevisiae-derived acetyl-CoA synthase and formate dehydrogenase into the engineered yeast, enabling efficient assimilation of electro-generated formate and acetate to enhance intracellular acetyl-CoA and NADPH pools. Through response surface methodology optimization, we determined optimal concentrations of formate (2.8 g/L) and acetate (6.5 g/L), leading to a final isoprene titer of 32.14 mg/L—representing a 2.6-fold enhancement over the baseline strain. This integrated approach not only demonstrates a carbon-negative strategy for isoprene biosynthesis but also establishes a versatile platform for producing acetyl-CoA-derived chemicals from CO₂.

Key words: Isoprene, Yarrowia lipolytica, MVA pathway, approaches to reducing competitive intensity, CO? electroreduction

中图分类号: