合成生物学 ›› 2021, Vol. 2 ›› Issue (2): 161-180.DOI: 10.12211/2096-8280.2020-087

• 特约评述 • 上一篇    下一篇

合成生物学助力废弃塑料资源生物解聚与升级再造

钱秀娟1, 刘嘉唯1, 薛瑞1, 刘豪杰1, 闻小红1, 杨璐1, 徐安明1, 许斌1, 信丰学1,2, 周杰1,2, 董维亮1,2, 姜岷1,2   

  1. 1.南京工业大学生物与制药工程学院,江苏 南京 211816
    2.南京工业大学材料化学工程国家重点实验室,江苏 南京 211816
  • 收稿日期:2020-12-04 修回日期:2021-02-11 出版日期:2021-04-29 发布日期:2021-04-30
  • 通讯作者: 董维亮,姜岷
  • 作者简介:钱秀娟(1992—),女,博士,博士后,研究方向为代谢工程及合成生物学。E-mail:xiujuanqian@njtech.edu.cn
    董维亮(1988—),男,博士,教授,研究方向为环境污染物的生物降解与转化利用。E-mail:dwl@njtech.edu.cn
    姜岷(1972—),男,博士,教授,研究方向为废弃碳资源利用人工多细胞体系设计与构建。E-mail:jiangmin@njtech.edu.cn
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流项目(31961133017);国家重点研发计划“合成生物学”重点专项(2019YFA0905500);国家自然科学基金(21978129);江苏省农业自主创新计划(CX(19)3104);江苏省研究生科研与实践创新计划(KYCX20_1100)

Synthetic biology boosts biological depolymerization and upgrading of waste plastics

Xiujuan QIAN1, Jiawei LIU1, Rui XUE1, Haojie LIU1, Xiaohong WEN1, Lu YANG1, Anming XU1, Bin XU1, Fengxue XIN1,2, Jie ZHOU1,2, Weiliang DONG1,2, Min JIANG1,2   

  1. 1.College of Biotechnology and Pharmaceutical Engineering,Nanjing Tech University,Nanjing 211816,Jiangsu,China
    2.State Key Laboratory of Materials-Oriented Chemical Engineering,Nanjing Tech University,Nanjing 211816,Jiangsu,China
  • Received:2020-12-04 Revised:2021-02-11 Online:2021-04-29 Published:2021-04-30
  • Contact: Weiliang DONG, Min JIANG

摘要:

石油基合成塑料因高分子量、高疏水性及高化学键能等特性难以被生物降解,在环境中不断累积,由此导致的“白色污染”已经成为一个全球性环境问题。填埋和焚烧是目前塑料垃圾处置最简单、常用的方法,但随之带来的是更为严重的环境二次污染问题。为解决这一问题,开发绿色高效的废塑料资源回收利用技术,从源头解决塑料污染,成为发展塑料循环经济的关键。利用微生物/酶将塑料降解为寡聚体或单体,或进一步转化为高值化学品,因反应条件温和、不产生二次污染等优点将成为废塑料污染治理与资源化的新途径。本文详细介绍了废塑料生物解聚与转化方面的最新研究进展,包括塑料降解微生物和酶的挖掘、混菌/多酶体系的设计与构建、塑料解聚机制,以及塑料解聚物到化学品、能源、材料等高附加值产品的转化。然而,废塑料生物降解过程中仍存在降解元件匮乏、降解效率低、降解物难以利用等技术瓶颈。随着合成生物学的快速发展,利用高通量筛选、进化代谢、生物信息学等先进的生物技术,解析降解关键酶的催化机制、定向设计与改造降解酶、研究混菌体系中菌株间互利共生关系与适配机制、设计并构建不同塑料降解物的代谢通路成为废塑料生物降解研究的重点方向。通过建立废塑料生物降解与高值化利用平台,可为巨量的废塑料资源循环利用提供新的理论基础和关键技术,为我国塑料循环经济发展提供经济、环保、可行的技术支撑。

关键词: 废塑料, 生物解聚, 生物转化, 混菌/多酶, 升级再造

Abstract:

Characterics of high molecular weight, high hydrophobicity and high chemical bond energy make petroleum-based synthetic plastics resist to abiotic and microbial degradation. "White pollution" caused by accumulated waste plastics in the environment has become a global challenge. Currently, landfill and incineration are the simplest and most commonly used methods for eliminating plastic wastes, given that only 20% of plastic wastes is recycled, but landfill and incineration cause more serious secondary hazards, such as pollution to groundwater, soil, air and ocean. Therefore, developing a green and efficient technology for recycling and reutilization plastic wastes is the key for solving plastic pollution, to boost a plastic recycling economy.Applications of microorganisms/enzymes to degrade plastics into oligomers or monomers, which can be further transformed into high-value added chemicals, have provided a new approach for such a purpose due to their mild and environmentally friendly proceses. This article comprehensively reviews the development of biodepolymerization and biotransformation for waste plastics, including mining plastic degrading microorganisms and enzymes, designing and constructing microbial consortia/enzyme cocktails, analyzing of plastics depolymerization mechanism, and transforming plastics degradants into high value-added products, such as chemicals, energy products, and materials. However, the lack of degradation enzyme components, low degradation efficiency and difficulty for utilizing the degradants limit the development of waste plastics biogradation. With advances in synthetic biology, emerging technologies, such as high-throughput screening, evolutionary metabolism, and bioinformatics to analyze the catalytic mechanism of key degradation enzymes, orientedly designing and modification of degradation enzymes, study of the mutualism relationship and mechanism in the microbial consortia, constructing metabolic pathways for different plastic degradants, will open windows for waste plastics biodegradation, providing environmentally friendly, economically competitive and technically feasible technologies to develop circular economy for the re-utilization of waste plastics in China.

Key words: waste plastics, biological depolymerization, biotransformation, microbial consortia/enzyme cocktails, re-utilization

中图分类号: