合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 825-832.DOI: 10.12211/2096-8280.2022-033

• 评论 • 上一篇    下一篇

无细胞多酶分子机器赋能二氧化碳的高值利用及其挑战

刘建明, 曾安平   

  1. 西湖大学合成生物学与生物智造中心,浙江  杭州  310030
  • 收稿日期:2022-06-09 修回日期:2022-08-11 出版日期:2022-10-31 发布日期:2022-11-16
  • 通讯作者: 曾安平
  • 作者简介:刘建明(1985—),男,博士,副研究员。研究方向为食品合成生物学,生物制造,代谢工程等。E-mail:liujianming@westlake.edu.cn
    曾安平(1963—),男,讲席教授,博士生导师,德国工程院院士,西湖大学合成生物学与生物智造中心创始主任。研究方向为生物化工、合成生物学、新型软物质功能材料等。E-mail:zenganping@westlake.edu.cn

Cell-free multi-enzyme machines for CO2 capture, utilization and its associated challenges

Jianming LIU, Anping ZENG   

  1. Center for Synthetic Biology and Biomanufacturing,Westlake University,Hangzhou 310030,Zhejiang,China
  • Received:2022-06-09 Revised:2022-08-11 Online:2022-10-31 Published:2022-11-16
  • Contact: Anping ZENG

摘要:

二氧化碳等温室气体排放导致的全球气候变暖及相应的气候灾难日益严重,开发高效二氧化碳捕获和利用技术迫在眉睫。利用生物制造技术固定二氧化碳是合成生物学工程科学的一个重要攻关方向,其中挖掘和组装无细胞多酶分子机器赋能二氧化碳高值利用,由于背景清晰、调控相对简单、副反应少和产率高等优点,受到越来越多的关注。近期,James C. Liao教授团队人工设计和开发了新型的多酶复合分子机器,建立了用于二氧化碳固定的闭合循环反应-还原型乙醛酸-丙酮酸合成路径(reductive glyoxylate-pyruvate synthesis cycle),可以理论上实现2分子二氧化碳(碳酸氢盐)到1分子乙醛酸的合成反应,并设计和尝试了反应过程中监控辅因子浓度以提高酶稳定性的策略。本文基于设计和组装体外多酶分子机器,聚焦辅因子工程以及利用多酶分子机器固定二氧化碳所面临的挑战等角度讨论这篇工作并简述作者的相关思考。

关键词: 二氧化碳固定, 多酶分子机器, 无细胞催化, 辅因子工程, 酶稳定性

Abstract:

Global warming, mainly caused by the emission of carbon dioxide, is becoming a serious problem, and it is urgent to develop efficient carbon dioxide capture and utilization technologies. The use of biomanufacturing technology to fix carbon dioxide is an important research direction in synthetic biology. The mining and in vitro assembly of cell-free multi-enzyme machines have the great potential to facilitate the conversion of carbon dioxide into high-value products. The advantages associated with cell-free biosynthesis, such as clear background, relatively simple metabolic regulation, and high-yield production, make it ideal for biomanufacturing. Recently, the team of James C. Liao designed and developed a novel multi-enzyme molecular machine, and established a reductive glyoxylate-pyruvate synthesis cycle, which can theoretically realize the conversion of 2 molecules of carbon dioxide (bicarbonate) to 1 molecule of glyoxylic acid. They also designed and developed a strategy to control the concentration of cofactors during the reaction to improve the enzyme stabilities. In this comment, we discuss this work from the perspectives of in vitro multi-enzyme assembly and cofactor engineering, and point to associated challenges of carbon dioxide utilization by multi-enzyme machines.

Key words: CO2 fixation, in vitro muti-enzyme machines, cell-free synthetic biology, cofactor engineering, enzyme stability

中图分类号: