合成生物学 ›› 2023, Vol. 4 ›› Issue (4): 676-689.DOI: 10.12211/2096-8280.2023-002
王凯1, 张婉2, 黄云海3, 张立新3, 娄春波1
收稿日期:
2023-01-01
修回日期:
2023-02-27
出版日期:
2023-08-31
发布日期:
2023-09-14
通讯作者:
张立新,娄春波
作者简介:
基金资助:
Kai WANG1, Wan ZHANG2, Yunhai HUANG3, Lixin ZHANG3, Chunbo LOU1
Received:
2023-01-01
Revised:
2023-02-27
Online:
2023-08-31
Published:
2023-09-14
Contact:
Lixin ZHANG, Chunbo LOU
摘要:
胞内病原菌是一类可以侵入并在哺乳动物细胞内生存的病原菌,它们可以调节宿主细胞内环境以便自身繁衍扩散。由于细胞膜等结构的保护,胞内病原菌在细胞内不容易被药物接触到,且容易积累耐药性,使得胞内病原菌的治疗成为一个悬而未决的难题,亟需新的治疗方法。噬菌体疗法是利用噬菌体裂解细菌治疗病原菌感染的手段。由于其不会对动物细胞产生危害,已经被广泛用于治疗病原细菌的胞外感染,同时为胞内病原菌的治疗提供了行之有效的新思路。本文介绍了细胞内病原体侵入和定居在真核细胞中的策略,以及它们对抗生素的抗性机制。噬菌体疗法具有独特的杀菌机制及突出的优势,因此噬菌体疗法在处理细胞内病原体特别是耐药病原体方面有巨大潜力。但噬菌体疗法在治疗细胞内病原体方面的应用仍面临许多挑战,如噬菌体不能轻易穿过真核细胞膜与细胞内病原体接触。最后,讨论了噬菌体疗法在治疗细胞内耐药病原体方面可能的发展方向。未来需解决噬菌体入胞难题,通过细胞穿透肽修饰或纳米材料修饰,使噬菌体能够有效地进入真核细胞。在此基础上,可以对噬菌体本身进行改造,获得杀菌效果更强的重组噬菌体,并进一步挖掘包括温和噬菌体在内的噬菌体资源。
中图分类号:
王凯, 张婉, 黄云海, 张立新, 娄春波. 噬菌体疗法在胞内病原菌治疗中的挑战与思考[J]. 合成生物学, 2023, 4(4): 676-689.
Kai WANG, Wan ZHANG, Yunhai HUANG, Lixin ZHANG, Chunbo LOU. Application of phage therapy in the treatment of intracellular pathogens[J]. Synthetic Biology Journal, 2023, 4(4): 676-689.
细胞内病原菌 | 噬菌体 | 实验模型/细胞类型 | 文献来源 | 研究阶段 |
---|---|---|---|---|
Chlamydia psittaci | phiCPG1 | HeLa cells | Hsia et al, 2000[ | Preclinical Research |
Staphylococcus aureus | MSa | Peritoneal mouse macrophages/mice | Capparelli et al, 2007[ | Preclinical Research |
MR-5 | Peritoneal mouse macrophages | Kaur et al, 2014[ | Preclinical Research | |
vB_SauM_JS25 | Bovine Mammary Epithelial Cells (MAC-T) | Zhang et al, 2017[ | Preclinical Research | |
MR-5 and MR-10 | mice | Chhibber et al, 2018[ | Preclinical Research | |
PP1493, PP1815, and PP1957 | MG63 osteoblastic Cells | Kolenda et al, 2020[ | Preclinical Research | |
Burkholderia pseudomallei | C34 | mice | Guang-Han et al, 2016[ | Preclinical Research |
Escherichia coli | K1F | Urinary bladder epithelial cell line, T24 (HTB-4) | Møller-Olsen et al, 2018[ | Preclinical Research |
K1F | human cerebral microvascularendothelial cells (hCMEC) | Møller-Olsen et al, 2020[ | Preclinical Research | |
Klebsiella pneumoniae | KPO1K2 | Peritoneal mouse macrophages | Singha et al, 2005[ | Preclinical Research |
KØ1, KØ2, KØ3, KØ4 and KØ5 | mice | Chadha et al, 2017[ | Preclinical Research | |
M. tuberculosis /Mycobacterium avium | TM4 | Mouse peritoneal macrophage cell line, RAW 264.7 | Broxmeyer et al, 2002[ | Preclinical Research |
Mycobacterium avium | TM4 | mice | Danelishvili et al, 2006[ | Preclinical Research |
M. tuberculosis | DS-A | pigs | Zemskova et al, 1991[ | Preclinical Research |
D29 | mouse peritoneal macrophages | Peng et al, 2006[ | Preclinical Research | |
D29 | macrophages | Xiong et al, 2014[ | Preclinical Research | |
D29 | mice | Carrigy et al, 2017[ | Preclinical Research | |
D29 | Peritoneal mouse macrophages | Lapenkova et al, 2018[ | Preclinical Research | |
D29 | mice | Carrigy et al, 2019[ | Preclinical Research |
表1 噬菌体治疗胞内病原菌感染[16-17,83-99]
Table 1 Phages against intracellular bacterial infection.
细胞内病原菌 | 噬菌体 | 实验模型/细胞类型 | 文献来源 | 研究阶段 |
---|---|---|---|---|
Chlamydia psittaci | phiCPG1 | HeLa cells | Hsia et al, 2000[ | Preclinical Research |
Staphylococcus aureus | MSa | Peritoneal mouse macrophages/mice | Capparelli et al, 2007[ | Preclinical Research |
MR-5 | Peritoneal mouse macrophages | Kaur et al, 2014[ | Preclinical Research | |
vB_SauM_JS25 | Bovine Mammary Epithelial Cells (MAC-T) | Zhang et al, 2017[ | Preclinical Research | |
MR-5 and MR-10 | mice | Chhibber et al, 2018[ | Preclinical Research | |
PP1493, PP1815, and PP1957 | MG63 osteoblastic Cells | Kolenda et al, 2020[ | Preclinical Research | |
Burkholderia pseudomallei | C34 | mice | Guang-Han et al, 2016[ | Preclinical Research |
Escherichia coli | K1F | Urinary bladder epithelial cell line, T24 (HTB-4) | Møller-Olsen et al, 2018[ | Preclinical Research |
K1F | human cerebral microvascularendothelial cells (hCMEC) | Møller-Olsen et al, 2020[ | Preclinical Research | |
Klebsiella pneumoniae | KPO1K2 | Peritoneal mouse macrophages | Singha et al, 2005[ | Preclinical Research |
KØ1, KØ2, KØ3, KØ4 and KØ5 | mice | Chadha et al, 2017[ | Preclinical Research | |
M. tuberculosis /Mycobacterium avium | TM4 | Mouse peritoneal macrophage cell line, RAW 264.7 | Broxmeyer et al, 2002[ | Preclinical Research |
Mycobacterium avium | TM4 | mice | Danelishvili et al, 2006[ | Preclinical Research |
M. tuberculosis | DS-A | pigs | Zemskova et al, 1991[ | Preclinical Research |
D29 | mouse peritoneal macrophages | Peng et al, 2006[ | Preclinical Research | |
D29 | macrophages | Xiong et al, 2014[ | Preclinical Research | |
D29 | mice | Carrigy et al, 2017[ | Preclinical Research | |
D29 | Peritoneal mouse macrophages | Lapenkova et al, 2018[ | Preclinical Research | |
D29 | mice | Carrigy et al, 2019[ | Preclinical Research |
1 | KELLERMANN M, SCHARTE F, HENSEL M. Manipulation of host cell organelles by intracellular pathogens[J]. International Journal of Molecular Sciences, 2021, 22(12): 6484. |
2 | SAMANTA D, MULYE M, CLEMENTE T M, et al. Manipulation of host cholesterol by obligate intracellular bacteria[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 165. |
3 | TAYLOR-ROBINSON D. The discovery of Chlamydia trachomatis [J]. Sexually Transmitted Infections, 2017, 93(1): 10. |
4 | MCDONALD T L, MALLAVIA L P. Host response to infection by Coxiella burneti [J]. Canadian Journal of Microbiology, 1975, 21(5): 675-681. |
5 | KOCH A, MIZRAHI V. Mycobacterium tuberculosis[J]. Trends in Microbiology, 2018, 26(6): 555-556. |
6 | FOLEY S L, JOHNSON T J, RICKE S C, et al. Salmonella pathogenicity and host adaptation in chicken-associated serovars[J]. Microbiology and Molecular Biology Reviews, 2013, 77(4): 582-607. |
7 | DISSON O, MOURA A, LECUIT M. Making sense of the biodiversity and virulence of Listeria monocytogenes [J]. Trends in Microbiology, 2021, 29(9): 811-822. |
8 | KAMARUZZAMAN N F, KENDALL S, GOOD L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections[J]. British Journal of Pharmacology, 2017, 174(14): 2225-2236. |
9 | CHAUHAN D, SHAMES S R. Pathogenicity and virulence of Legionella: intracellular replication and host response[J]. Virulence, 2021, 12(1): 1122-1144. |
10 | ZEIDERS S M, CHMIELEWSKI J. Antibiotic-cell-penetrating peptide conjugates targeting challenging drug-resistant and intracellular pathogenic bacteria[J]. Chemical Biology & Drug Design, 2021, 98(5): 762-778. |
11 | WHO. Global tuberculosis report 2022[EB/OL][2022-12-31]. . |
12 | GROBBELAAR M, LOUW G E, SAMPSON S L, et al. Evolution of rifampicin treatment for tuberculosis[J]. Infection, Genetics and Evolution, 2019, 74: 103937. |
13 | RUIZ P, RODRÍGUEZ-CANO F, ZEROLO F J, et al. Current interest of isoniazid in the chemotherapy of tuberculosis in the light of its in vitro activity[J]. Microbial Drug Resistance, 2003, 9(3): 313-316. |
14 | GORDILLO ALTAMIRANO F L, BARR J J. Phage therapy in the postantibiotic era[J]. Clinical Microbiology Reviews, 2019, 32(2): e00066-18. |
15 | KORTRIGHT K E, CHAN B K, KOFF J L, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria[J]. Cell Host & Microbe, 2019, 25(2): 219-232. |
16 | BROXMEYER L, SOSNOWSKA D, MILTNER E, et al. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens[J]. The Journal of Infectious Diseases, 2002, 186(8): 1155-1160. |
17 | DANELISHVILI L, YOUNG L S, BERMUDEZ L E. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent mycobacterium[J]. Microbial Drug Resistance, 2006, 12(1): 1-6. |
18 | SANTUCCI P. Intracellular pathogens, membrane damage and cytosolic access[J]. Cellular Microbiology, 2021, 23(4): e13296. |
19 | ASRAT S, DE JESÚS D A, HEMPSTEAD A D, et al. Bacterial pathogen manipulation of host membrane trafficking[J]. Annual Review of Cell and Developmental Biology, 2014, 30: 79-109. |
20 | VON BOTH U, BERK M, AGAPOW P M, et al. Mycobacterium tuberculosis exploits a molecular off switch of the immune system for intracellular survival[J]. Scientific Reports, 2018, 8: 661. |
21 | BUSSI C, GUTIERREZ M G. Mycobacterium tuberculosis infection of host cells in space and time[J]. FEMS Microbiology Reviews, 2019, 43(4): 341-361. |
22 | PIZARRO-CERDÁ J, COSSART P. Listeria monocytogenes: cell biology of invasion and intracellular growth[J]. Microbiology Spectrum, 2018, 6(6): GPP3-0013-2018. |
23 | PIZARRO-CERDÁ J, KÜHBACHER A, COSSART P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(11): a010009. |
24 | TRAN VAN NHIEU G, BOURDET-SICARD R, DUMÉNIL G, et al. Bacterial signals and cell responses during Shigella entry into epithelial cells. Microreview[J]. Cellular Microbiology, 2000, 2(3): 187-193. |
25 | WEDDLE E A, KÖSEOĞLU V K, DEVASURE B A, et al. The type three secretion system effector protein IpgB1 promotes Shigella flexneri cell-to-cell spread through double-membrane vacuole escape[J]. PLoS Pathogens, 2022, 18(2): e1010380. |
26 | RILEY L W. Determinants of cell entry and intracellular survival of Mycobacterium tuberculosis [J]. Trends in Microbiology, 1995, 3(1): 27-31. |
27 | IBARRA J A, STEELE-MORTIMER O. Salmonella- the ultimate insider. Salmonella virulence factors that modulate intracellular survival[J]. Cellular Microbiology, 2009, 11(11): 1579-1586. |
28 | RAY K, MARTEYN B, SANSONETTI P J, et al. Life on the inside: the intracellular lifestyle of cytosolic bacteria[J]. Nature Reviews Microbiology, 2009, 7(5): 333-340. |
29 | WONG D, BACH H, SUN J, et al. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(48): 19371-19376. |
30 | KANG P B, AZAD A K, TORRELLES J B, et al. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis[J]. The Journal of Experimental Medicine, 2005, 202(7): 987-999. |
31 | MÉRESSE S, STEELE-MORTIMER O, MORENO E, et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death[J]. Nature Cell Biology, 1999, 1(7): E183-E188. |
32 | VOGEL J P, ISBERG R R. Cell biology of Legionella pneumophila [J]. Current Opinion in Microbiology, 1999, 2(1): 30-34. |
33 | PIZARRO-CERDÁ J, MÉRESSE S, PARTON R G, et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes[J]. Infection and Immunity, 1998, 66(12): 5711-5724. |
34 | CELLI J, DE CHASTELLIER C, FRANCHINI D M, et al. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum[J]. The Journal of Experimental Medicine, 2003, 198(4): 545-556. |
35 | PETIT T J P, LEBRETON A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches[J]. Trends in Microbiology, 2022, 30(8): 736-748. |
36 | MOGENSEN T H. Pathogen recognition and inflammatory signaling in innate immune defenses[J]. Clinical Microbiology Reviews, 2009, 22(2): 240-273, Table of Contents. |
37 | RANDOW F, MACMICKING J D, JAMES L C. Cellular self-defense: how cell-autonomous immunity protects against pathogens[J]. Science, 2013, 340(6133): 701-706. |
38 | BHAN U, TRUJILLO G, LYN-KEW K, et al. Toll-like receptor 9 regulates the lung macrophage phenotype and host immunity in murine pneumonia caused by Legionella pneumophila [J]. Infection and Immunity, 2008, 76(7): 2895-2904. |
39 | XU J Z, KUMAR R, GONG H L, et al. Toll-like receptor 3 deficiency leads to altered immune responses to Chlamydia trachomatis infection in human oviduct epithelial cells[J]. Infection and Immunity, 2019, 87(10): e00483-e00419. |
40 | GOUIN E, ADIB-CONQUY M, BALESTRINO D, et al. The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the IκB kinase subunit IKKα[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17333-17338. |
41 | BISWAS S, RAOULT D, ROLAIN J M. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis[J]. International Journal of Antimicrobial Agents, 2008, 32(3): 207-220. |
42 | GARCÍA I, PASCUAL A, BALLESTA S, et al. Uptake and intracellular activity of ofloxacin isomers in human phagocytic and non-phagocytic cells[J]. International Journal of Antimicrobial Agents, 2000, 15(3): 201-205. |
43 | PASCUAL A, GARCÍA I, BALLESTA S, et al. Uptake and intracellular activity of moxifloxacin in human neutrophils and tissue-cultured epithelial cells[J]. Antimicrobial Agents and Chemotherapy, 1999, 43(1): 12-15. |
44 | PEREA E J, GARCÍA I, PASCUAL A. Comparative penetration of lomefloxacin and other quinolones into human phagocytes[J]. The American Journal of Medicine, 1992, 92(4A): 48S-51S. |
45 | ODENHOLT I, GUSTAFSSON I, LÖWDIN E, et al. Suboptimal antibiotic dosage as a risk factor for selection of penicillin-resistant Streptococcus pneumoniae: in vitro kinetic model[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(2): 518-523. |
46 | DUGAN J, ROCKEY D D, JONES L, et al. Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(10): 3989-3995. |
47 | RAMASWAMY S, MUSSER J M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update[J]. Tubercle and Lung Disease, 1998, 79(1): 3-29. |
48 | SOMOSKOVI A, PARSONS L M, SALFINGER M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis [J]. Respiratory Research, 2001, 2(3): 164-168. |
49 | MAROSEVIC D, KAEVSKA M, JAGLIC Z. Resistance to the tetracyclines and macrolide-lincosamide-streptogramin group of antibiotics and its genetic linkage—a review[J]. Annals of Agricultural and Environmental Medicine, 2017, 24(2): 338-344. |
50 | CONNELL S R, TRACZ D M, NIERHAUS K H, et al. Ribosomal protection proteins and their mechanism of tetracycline resistance[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(12): 3675-3681. |
51 | KUMAR A, SCHWEIZER H P. Bacterial resistance to antibiotics: active efflux and reduced uptake[J]. Advanced Drug Delivery Reviews, 2005, 57(10): 1486-1513. |
52 | FISHER R A, GOLLAN B, HELAINE S. Persistent bacterial infections and persister cells[J]. Nature Reviews Microbiology, 2017, 15(8): 453-464. |
53 | DÖRR T, VULIĆ M, LEWIS K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli [J]. PLoS Biology, 2010, 8(2): e1000317 |
54 | MECHLER L, HERBIG A, PAPROTKA K, et al. A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus [J]. Antimicrobial Agents and Chemotherapy, 2015, 59(9): 5366-5376. |
55 | VAN DEN BERGH B, MICHIELS J E, WENSELEERS T, et al. Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence[J]. Nature Microbiology, 2016, 1: 16020. |
56 | COHEN N R, LOBRITZ M A, COLLINS J J. Microbial persistence and the road to drug resistance[J]. Cell Host & Microbe, 2013, 13(6): 632-642. |
57 | LEVIN-REISMAN I, RONIN I, GEFEN O, et al. Antibiotic tolerance facilitates the evolution of resistance[J]. Science, 2017, 355(6327): 826-830. |
58 | VARELA G, GONZÁLEZ S, GADEA P, et al. Prevalence and dissemination of the Ser315Thr substitution within the KatG enzyme in isoniazid-resistant strains of Mycobacterium tuberculosis isolated in Uruguay[J]. Journal of Medical Microbiology, 2008, 57(Pt 12): 1518-1522. |
59 | ZAW M T, EMRAN N A, LIN Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis [J]. Journal of Infection and Public Health, 2018, 11(5): 605-610. |
60 | SAFI H, GOPAL P, LINGARAJU S, et al. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19665-19674. |
61 | LANGE C, CHESOV D, HEYCKENDORF J, et al. Drug-resistant tuberculosis: an update on disease burden, diagnosis and treatment[J]. Respirology, 2018, 23(7): 656-673. |
62 | MARAKALALA M J, RAJU R M, SHARMA K, et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized[J]. Nature Medicine, 2016, 22(5): 531-538. |
63 | GENGENBACHER M, KAUFMANN S H E. Mycobacterium tuberculosis: success through dormancy[J]. FEMS Microbiology Reviews, 2012, 36(3): 514-532. |
64 | DION M B, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3): 125-138. |
65 | SUMMERS W C. The strange history of phage therapy[J]. Bacteriophage, 2012, 2(2): 130-133. |
66 | D'HERELLE F, SMITH G H. Immunity in natural infectious diseases[J]. The Science News-Letter, 1924, 5(190): 10. |
67 | ŻACZEK M, WEBER-DĄBROWSKA B, MIĘDZYBRODZKI R, et al. Phage therapy in Poland—a centennial journey to the first ethically approved treatment facility in Europe[J]. Frontiers in Microbiology, 2020, 11: 1056. |
68 | MERRIL C R, SCHOLL D, ADHYA S L. The prospect for bacteriophage therapy in Western medicine[J]. Nature Reviews Drug Discovery, 2003, 2(6): 489-497. |
69 | LUONG T, SALABARRIA A C, ROACH D R. Phage therapy in the resistance era: where do we stand and where are we going?[J]. Clinical Therapeutics, 2020, 42(9): 1659-1680. |
70 | SALMOND G P C, FINERAN P C. A century of the phage: past, present and future[J]. Nature Reviews Microbiology, 2015, 13(12): 777-786. |
71 | OLSZAK T, LATKA A, ROSZNIOWSKI B, et al. Phage life cycles behind bacterial biodiversity[J]. Current Medicinal Chemistry, 2017, 24(36): 3987-4001. |
72 | PARASION S, KWIATEK M, GRYKO R, et al. Bacteriophages as an alternative strategy for fighting biofilm development[J]. Polish Journal of Microbiology, 2014, 63(2): 137-145. |
73 | REHMAN S, ALI Z, KHAN M, et al. The dawn of phage therapy[J]. Reviews in Medical Virology, 2019, 29(4): e2041. |
74 | CISEK A A, DĄBROWSKA I, GREGORCZYK K P, et al. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages[J]. Current Microbiology, 2017, 74(2): 277-283. |
75 | ORMÄLÄ A M, JALASVUORI M. Phage therapy: should bacterial resistance to phages be a concern, even in the long run?[J]. Bacteriophage, 2013, 3(1): e24219. |
76 | HAQ I U, CHAUDHRY W N, AKHTAR M N, et al. Bacteriophages and their implications on future biotechnology: a review[J]. Virology Journal, 2012, 9: 9. |
77 | CHAN B K, ABEDON S T, LOC-CARRILLO C. Phage cocktails and the future of phage therapy[J]. Future Microbiology, 2013, 8(6): 769-783. |
78 | LOOD C, HAAS P J, VAN NOORT V, et al. Shopping for phages? Unpacking design rules for therapeutic phage cocktails[J]. Current Opinion in Virology, 2022, 52: 236-243. |
79 | FAROOQ T, HUSSAIN M D, SHAKEEL M T, et al. Deploying viruses against phytobacteria: potential use of phage cocktails as a multifaceted approach to combat resistant bacterial plant pathogens[J]. Viruses, 2022, 14(2): 171. |
80 | DEDRICK R M, GUERRERO-BUSTAMANTE C A, GARLENA R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus [J]. Nature Medicine, 2019, 25(5): 730-733. |
81 | NICK J A, DEDRICK R M, GRAY A L, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection[J]. Cell, 2022, 185(11): 1860-1874.e12. |
82 | LITTLE J S, DEDRICK R M, FREEMAN K G, et al. Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection[J]. Nature Communications, 2022, 13(1): 2313. |
83 | HSIA R C, OHAYON H, GOUNON P,et al. Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain Guinea pig inclusion conjunctivitis[J]. Microbes and Infection, 2000, 2(7): 761-772. |
84 | CAPPARELLI R, PARLATO M, BORRIELLO G, et al. Experimental phage therapy against Staphylococcus aureus in mice[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(8): 2765-2773. |
85 | KAUR S, HARJAI K, CHHIBBER S. Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages[J]. Applied Microbiology and Biotechnology, 2014, 98(10): 4653-4661. |
86 | ZHANG L L, SUN L C, WEI R C, et al. Intracellular Staphylococcus aureus control by virulent bacteriophages within MAC-T bovine mammary epithelial cells[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(2): e01990-e01916. |
87 | CHHIBBER S, KAUR J, KAUR S. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection[J]. Frontiers in Microbiology, 2018, 9: 561. |
88 | KOLENDA C, JOSSE J, MEDINA M, et al. Evaluation of the activity of a combination of three bacteriophages alone or in association with antibiotics on Staphylococcus aureus embedded in biofilm or internalized in osteoblasts[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(3): e02231-19. |
89 | Guang-Han ONG, CHOH Leang-Chung, VELLASAMY K M, et al. Experimental phage therapy for Burkholderia pseudomallei infection[J]. PLoS One, 2016, 11(7): e0158213. |
90 | MØLLER-OLSEN C, STANLEY HO S F, DEV SHUKLA R, et al. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells[J]. Scientific Reports, 2018, 8: 17559. |
91 | MØLLER-OLSEN C, ROSS T, LEPPARD K N, et al. Bacteriophage K1F targets Escherichia coli K1 in cerebral endothelial cells and influences the barrier function[J]. Scientific Reports, 2020, 10: 8903. |
92 | SINHA B, HERRMANN M. Mechanism and consequences of invasion of endothelial cells by Staphylococcus aureus [J]. Thrombosis and Haemostasis, 2005, 94(2): 266-277. |
93 | CHADHA P, KATARE O P, CHHIBBER S. Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections[J]. Burns, 2017, 43(7): 1532-1543. |
94 | ZEMSKOVA Z S, DOROZHKOVA I R. Pathomorphological assessment of the therapeutic effect of mycobacteriophages in tuberculosis[J]. Problemy Tuberkuleza, 1991(11): 63-66. |
95 | PENG L, CHEN B W, LUO Y A, et al. Effect of mycobacteriophage to intracellular mycobacteria in vitro [J]. Chinese Medical Journal, 2006, 119(8): 692-695. |
96 | XIONG X, ZHANG H M, WU T T, et al. Titer dynamic analysis of D29 within MTB-infected macrophages and effect on immune function of macrophages[J]. Experimental Lung Research, 2014, 40(2): 86-98. |
97 | CARRIGY N B, CHANG R Y, LEUNG S S Y, et al. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler[J]. Pharmaceutical Research, 2017, 34(10): 2084-2096. |
98 | LAPENKOVA M B, SMIRNOVA N S, RUTKEVICH P N, et al. Evaluation of the efficiency of lytic mycobacteriophage D29 on the model of M. tuberculosis-infected macrophage RAW 264 cell line[J]. Bulletin of Experimental Biology and Medicine, 2018, 164(3): 344-346. |
99 | CARRIGY N B, LARSEN S E, REESE V, et al. Prophylaxis of Mycobacterium tuberculosis H37Rv infection in a preclinical mouse model via inhalation of nebulized bacteriophage D29[J]. Antimicrobial Agents and Chemotherapy, 2019, 63(12): e00871-19. |
100 | SCHOOLEY R T, BISWAS B, GILL J J, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant acinetobacter baumannii infection[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(10): e00954-17. |
101 | MALIK D J, SOKOLOV I J, VINNER G K, et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy[J]. Advances in Colloid and Interface Science, 2017, 249: 100-133. |
102 | PRINCIPI N, SILVESTRI E, ESPOSITO S. Advantages and limitations of bacteriophages for the treatment of bacterial infections[J]. Frontiers in Pharmacology, 2019, 10: 513. |
103 | SARKER S A, SULTANA S, REUTELER G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh[J]. EBioMedicine, 2016, 4: 124-137. |
104 | DEDRICK R M, FREEMAN K G, NGUYEN J A, et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection[J]. Nature Medicine, 2021, 27(8): 1357-1361. |
105 | SCHÄFER R, HUBER U, FRANKLIN R M. Chemical and physical properties of mycobacteriophage D29[J]. European Journal of Biochemistry, 1977, 73(1): 239-246. |
106 | FORD M E, SARKIS G J, BELANGER A E, et al. Genome structure of mycobacteriophage D29: implications for phage evolution[J]. Journal of Molecular Biology, 1998, 279(1): 143-164. |
107 | YAN W, BANERJEE P, XU M, et al. Formulation strategies for bacteriophages to target intracellular bacterial pathogens[J]. Advanced Drug Delivery Reviews, 2021, 176: 113864. |
108 | HENRY R, SHAUGHNESSY L, LOESSNER M J, et al. Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes [J]. Cellular Microbiology, 2006, 8(1): 107-119. |
109 | SHAUGHNESSY L M, HOPPE A D, CHRISTENSEN K A, et al. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles[J]. Cellular Microbiology, 2006, 8(5): 781-792. |
110 | GUERRERO-BUSTAMANTE C A, DEDRICK R M, GARLENA R A, et al. Toward a phage cocktail for tuberculosis: susceptibility and tuberculocidal action of mycobacteriophages against diverse Mycobacterium tuberculosis strains[J]. mBio, 2021, 12(3): e00973-e00921. |
111 | LI M Y, CHANG R Y K, LIN Y, et al. Phage cocktail powder for Pseudomonas aeruginosa respiratory infections[J]. International Journal of Pharmaceutics, 2021, 596: 120200. |
112 | MA Y S, PACAN J C, WANG Q, et al. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery[J]. Applied and Environmental Microbiology, 2008, 74(15): 4799-4805. |
113 | AGARWAL R, JOHNSON C T, IMHOFF B R, et al. Inhaled bacteriophage-loaded polymeric microparticles ameliorate acute lung infections[J]. Nature Biomedical Engineering, 2018, 2(11): 841-849. |
114 | NIETH A, VERSEUX C, BARNERT S, et al. A first step toward liposome-mediated intracellular bacteriophage therapy[J]. Expert Opinion on Drug Delivery, 2015, 12(9): 1411-1424. |
115 | MADANI F, LINDBERG S, LANGEL U, et al. Mechanisms of cellular uptake of cell-penetrating peptides[J]. Journal of Biophysics, 2011, 2011: 414729. |
116 | BHATTARAI S R, YOO S Y, LEE S W, et al. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection[J]. Biomaterials, 2012, 33(20): 5166-5174. |
117 | FULGIONE A, IANNIELLO F, PAPAIANNI M, et al. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages[J]. International Journal of Nanomedicine, 2019, 14: 2219-2232. |
118 | MENG L, YANG F M, PANG Y, et al. Nanocapping-enabled charge reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition[J]. Science Advances, 2022, 8(28): eabq2005. |
119 | GORDILLO ALTAMIRANO F L, BARR J J. Unlocking the next generation of phage therapy: the key is in the receptors[J]. Current Opinion in Biotechnology, 2021, 68: 115-123. |
120 | YANG Y H, SHEN W, ZHONG Q, et al. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa [J]. Frontiers in Microbiology, 2020, 11: 327. |
121 | BRIVES C, POURRAZ J. Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures[J].Palgrave Communications, 2020, 6(1): 100. |
122 | TOUCHON M, BERNHEIM A, ROCHA E P. Genetic and life-history traits associated with the distribution of prophages in bacteria[J]. The ISME Journal, 2016, 10(11): 2744-2754. |
123 | ZHANG H, FOUTS D E, DEPEW J, et al. Genetic modifications to temperate Enterococcus faecalis phage Ef11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection[J]. Microbiology, 2013, 159(Pt 6): 1023-1035. |
124 | PARK J Y, MOON B Y, PARK J W, et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus [J]. Scientific Reports, 2017, 7: 44929. |
[1] | 陈青黎, 童贻刚. 工程噬菌体的合成生物学“智造”[J]. 合成生物学, 2023, 4(2): 283-300. |
[2] | 梁晓声, 郭永超, 门冬, 张先恩. 病毒-纳米金杂合导电网络结构在电化学分析的应用[J]. 合成生物学, 2022, 3(2): 415-427. |
[3] | 金交羽, 周佳海. Z-基因组的生物合成奥秘被揭示[J]. 合成生物学, 2022, 3(1): 1-5. |
[4] | 袁盛建, 马迎飞. 噬菌体合成生物学研究进展和应用[J]. 合成生物学, 2020, 1(6): 635-655. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||