合成生物学 ›› 2024, Vol. 5 ›› Issue (4): 883-897.DOI: 10.12211/2096-8280.2023-105
胡可儿1, 王汉奇1,2, 黄儒麒1,2, 张灿阳1,3, 邢新会1,3,4, 马少华1,2,3
收稿日期:
2023-12-04
修回日期:
2024-02-26
出版日期:
2024-08-31
发布日期:
2024-09-19
通讯作者:
张灿阳,马少华
作者简介:
基金资助:
Ke’er HU1, Hanqi WANG1,2, Ruqi HUANG1,2, Canyang ZHANG1,3, Xinhui XING1,3,4, Shaohua MA1,2,3
Received:
2023-12-04
Revised:
2024-02-26
Online:
2024-08-31
Published:
2024-09-19
Contact:
Canyang ZHANG, Shaohua MA
Supported by:
摘要:
类器官和类器官芯片技术是一种由干细胞或特定类型的细胞在体外培养而成的模拟真实器官功能和微环境的三维组织结构,帮助研究者更准确地研究生物过程、疾病机制,为体外疾病模型的建立、药物筛选和个性化医疗提供了新的可能性。然而,当前类器官模型的构建还存在无法全面、准确模拟体内生物过程的诸多问题。为应对这一挑战,本文将讨论利用基于工程化原理的整合设计策略,指导类器官与类器官芯片技术的进一步优化,并通过将器官发育和疾病发展中的生物要素与跨学科工程方法建立合理的系统性联系,实现类器官在时间维度和空间维度上高度模拟体内器官自组织过程、结构与形态构建、生物功能获取的目标。进一步,利用整合高维数据集的数字孪生类器官系统,实现对类器官与类器官芯片的大数据管理、分析、追踪,将有助于更准确地进行疾病分析、指导预测、提出提前干预方案,推动精准医疗向“治未病”时代的进步。
中图分类号:
胡可儿, 王汉奇, 黄儒麒, 张灿阳, 邢新会, 马少华. 整合设计策略下的工程化类器官与类器官芯片技术[J]. 合成生物学, 2024, 5(4): 883-897.
Ke’er HU, Hanqi WANG, Ruqi HUANG, Canyang ZHANG, Xinhui XING, Shaohua MA. Integrated design strategies for engineered organoids and organ-on-a-chip technologies[J]. Synthetic Biology Journal, 2024, 5(4): 883-897.
1 | ROSSI G, MANFRIN A, LUTOLF M P. Progress and potential in organoid research[J]. Nature Reviews Genetics, 2018, 19: 671-687. |
2 | WU L, AI Y J, XIE R X, et al. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models[J]. Lab on a Chip, 2023, 23(5): 1192-1212. |
3 | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
MENG Q, YIN C, HUANG W R. Tumor organoids and research progress in synthetic biology[J]. Synthetic Biology Journal, 2024, 5(1): 191-201. | |
4 | KOGLER S, KØMURCU K S, OLSEN C, et al. Organoids, organ-on-a-chip, separation science and mass spectrometry: an update[J]. TrAC Trends in Analytical Chemistry, 2023, 161: 116996. |
5 | TUVESON D, CLEVERS H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444): 952-955. |
6 | PICOLLET-D’HAHAN N, LAPERROUSAZ B, PORTE S, et al. Encapsulated organoids & organ-on-a-chip platform for cancer modeling[C/OL]// 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 2017: 10.6.1-10.6.4[2023-12-01]. . |
7 | DORNHOF J, KIENINGER J, MAURER J, et al. Next generation organ-on-chip system for directional control of culture conditions and metabolic monitoring of tumor organoids[C/OL]// 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors ⅩⅩⅩⅢ (TRANSDUCERS & EUROSENSORS ⅩⅩⅩⅢ). IEEE, 2019: 1106-1108 [2023-12-01]. . |
8 | KIM J H, KOO B K, KNOBLICH J A. Human organoids: model systems for human biology and medicine[J]. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571-584. |
9 | YOUSEF YENGEJ F A, JANSEN J, ROOKMAAKER M B, et al. Kidney organoids and tubuloids[J]. Cells, 2020, 9(6): 1326. |
10 | 徐灿丽, 何文星, 汪磊, 等. 肝脏类器官研究的文献计量学分析[J]. 中国组织工程研究, 2024, 28: 1099-1104. |
XU C L, HE W X, WANG L, et al. Bibliometric analysis of researches on liver organoids[J]. Chinese Journal of Tissue Engineering Research, 2024, 28: 1099-1104. | |
11 | TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 168. |
12 | LITTLE M H, COMBES A N. Kidney organoids: accurate models or fortunate accidents[J]. Genes & Development, 2019, 33(19/20): 1319-1345. |
13 | YOSHIHARA E, O′CONNOR C, GASSER E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020, 586(7830): 606-611. |
14 | YUKI K, CHENG N, NAKANO M, et al. Organoid models of tumor immunology[J]. Trends in Immunology, 2020, 41(8): 652-664. |
15 | HOFER M, LUTOLF M P. Engineering organoids[J]. Nature Reviews Materials, 2021, 6(5): 402-420. |
16 | JACOB F, SALINAS R D, ZHANG D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell, 2020, 180(1): 188-204. e22. |
17 | TAKEBE T, WELLS J M. Organoids by design[J]. Science, 2019, 364(6444): 956-959. |
18 | AISENBREY E A, MURPHY W L. Synthetic alternatives to Matrigel[J]. Nature Reviews Materials, 2020, 5(7): 539-551. |
19 | DIJKSTRA K K, MONKHORST K, SCHIPPER L J, et al. Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine[J]. Cell Reports, 2020, 31(5): 107588. |
20 | CAPELING M M, HUANG S, CHILDS C J, et al. Suspension culture promotes serosal mesothelial development in human intestinal organoids[J]. Cell Reports, 2022, 38(7): 110379. |
21 | HOFBAUER P, JAHNEL S M, PAPAI N, et al. Cardioids reveal self-organizing principles of human cardiogenesis[J]. Cell, 2021, 184(12): 3299-3317. e22. |
22 | GANGULI A, MOSTAFA A, SAAVEDRA C, et al. Three-dimensional microscale hanging drop arrays with geometric control for drug screening and live tissue imaging[J]. Science Advances, 2021, 7(17): eabc1323. |
23 | FREY O, MISUN P M, FLURI D A, et al. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis[J]. Nature Communications, 2014, 5: 4250. |
24 | LI Y E, JODAT Y A, SAMANIPOUR R, et al. Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs[J]. Biofabrication, 2020, 13(1): 015014. |
25 | BERTHENET K, CASTILLO FERRER C, FANFONE D, et al. Failed apoptosis enhances melanoma cancer cell aggressiveness[J]. Cell Reports, 2020, 31(10): 107731. |
26 | CHRISNANDY A, BLONDEL D, REZAKHANI S, et al. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis[J]. Nature Materials, 2022, 21(4): 479-487. |
27 | KERMANY D S, GOLDBAUM M, CAI W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131. e9. |
28 | ZHANG S, WAN Z P, KAMM R D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature[J]. Lab on a Chip, 2021, 21(3): 473-488. |
29 | LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467): 373-379. |
30 | TAKEBE T, SEKINE K, ENOMURA M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature, 2013, 499(7459): 481-484. |
31 | BROUTIER L, MASTROGIOVANNI G, VERSTEGEN M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nature Medicine, 2017, 23: 1424-1435. |
32 | LUCKETT K A, GANESH K. Engineering the immune microenvironment into organoid models[J]. Annual Review of Cancer Biology, 2023, 7: 171-187. |
33 | 高坚钧, 秦伟, 王浩, 等. 类器官技术在肿瘤研究中的应用与展望[J]. 中国组织工程研究, 2019, 23(7): 1136-1141. |
GAO J J, QIN W, WANG H, et al. Application and prospect of organoid technique in cancer research[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(7): 1136-1141. | |
34 | DUESTER G. Retinoic acid synthesis and signaling during early organogenesis[J]. Cell, 2008, 134(6): 921-931. |
35 | KIM M S, MUN H M, SUNG C O, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nature Communications, 2019, 10(1): 3991. |
36 | SHAH S B, SINGH A. Cellular self-assembly and biomaterials-based organoid models of development and diseases[J]. Acta Biomaterialia, 2017, 53: 29-45. |
37 | HUBERT C G, RIVERA M, SPANGLER L C, et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo [J]. Cancer Research, 2016, 76(8): 2465-2477. |
38 | HOMAN K A, KOLESKY D B, SKYLAR-SCOTT M A, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips[J]. Scientific Reports, 2016, 6: 34845. |
39 | GRASSI L, ALFONSI R, FRANCESCANGELI F, et al. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases[J]. Cell Death & Disease, 2019, 10(3): 201. |
40 | CALANDRINI C, SCHUTGENS F, OKA R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity[J]. Nature Communications, 2020, 11(1): 1310. |
41 | LANCASTER M A, KNOBLICH J A. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194): 1247125. |
42 | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. |
43 | LANCASTER M A, KNOBLICH J A. Generation of cerebral organoids from human pluripotent stem cells[J]. Nature Protocols, 2014, 9(10): 2329-2340. |
44 | ZHAO Z, CHEN X, DOWBAJ A M, et al. Organoids[J]. Nature Reviews Methods Primers, 2022, 2: 94. |
45 | YANG H, WANG Y N, WANG P, et al. Tumor organoids for cancer research and personalized medicine[J]. Cancer Biology and Medicine, 2022, 19(3): 319-332. |
46 | DUTTA D, HEO I, CLEVERS H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends in Molecular Medicine, 2017, 23(5): 393-410. |
47 | LEE J Y, RABBANI C C, GAO H Y, et al. Hair-bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020, 582(7812): 399-404. |
48 | YANG R F, ZHENG Y, BURROWS M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nature Communications, 2014, 5: 3071. |
49 | 吴迪, 王守宝, 杜冠华. 心脏类器官的研究进展及在药物发现研究中的应用[J]. 药学学报, 2023, 58(4): 884-890. |
WU D, WANG S B, DU G H. Advances in research of heart organoid and its application in drug discovery[J]. Acta Pharmaceutica Sinica, 2023, 58(4): 884-890. | |
50 | KARZBRUN E, KSHIRSAGAR A, COHEN S R, et al. Human brain organoids on a chip reveal the physics of folding[J]. Nature Physics, 2018, 14(5): 515-522. |
51 | YIN X L, MEAD B, SAFAEE H, et al. Engineering stem cell organoids[J]. Cell Stem Cell, 2016, 18(1): 25-38. |
52 | CLEVERS H. The intestinal crypt, a prototype stem cell compartment[J]. Cell, 2013, 154(2): 274-284. |
53 | WANG X S. Stem cells in tissues, organoids, and cancers[J]. Cellular and Molecular Life Sciences, 2019, 76: 4043-4070. |
54 | SASAI Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture[J]. Cell Stem Cell, 2013, 12(5): 520-530. |
55 | BRASSARD J A, LUTOLF M P. Engineering stem cell self-organization to build better organoids[J]. Cell Stem Cell, 2019, 24(6): 860-876. |
56 | BEYDAG-TASÖZ B S, YENNEK S, GRAPIN-BOTTON A. Towards a better understanding of diabetes mellitus using organoid models[J]. Nature Reviews Endocrinology, 2023, 19(4): 232-248. |
57 | KASSIS T, HERNANDEZ-GORDILLO V, LANGER R, et al. OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks[J]. Scientific Reports, 2019, 9(1): 12479. |
58 | FIORINI E, VEGHINI L, CORBO V. Modeling cell communication in cancer with organoids: making the complex simple[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 166. |
59 | KRISHNA S, CHOUDHURY A, NI L J, et al. Tami-21. malignant gliomas remodel functional neural circuits through paracrine signaling which confers a negative prognosis[J]. Neuro-Oncology, 2020, 22(): ii217-ii218. |
60 | SAHIN U. Studying tumor-reactive T cells: a personalized organoid model[J]. Cell Stem Cell, 2018, 23(3): 318-319. |
61 | DROST J, VAN JAARSVELD R H, PONSIOEN B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521: 43-47. |
62 | DROST J, CLEVERS H. Organoids in cancer research[J]. Nature Reviews Cancer, 2018, 18: 407-418. |
63 | TAKEBE T, WELLS J M, HELMRATH M A, et al. Organoid center strategies for accelerating clinical translation[J]. Cell Stem Cell, 2018, 22(6): 806-809. |
64 | ZHANG W J, LI D H, JIANG S W, et al. Microfluidic droplets as structural templates for matrigel to enable 1-week large organoid modeling[J]. Chemical Engineering Science, 2021, 238: 116632. |
65 | ZHANG W J, LI J W, ZHOU J Q, et al. Translational organoid technology - the convergence of chemical, mechanical, and computational biology[J]. Trends in Biotechnology, 2022, 40(9): 1121-1135. |
66 | PARK S E, GEORGESCU A, HUH D E. Organoids-on-a-chip[J]. Science, 2019, 364(6444): 960-965. |
67 | MAMMOTO T, INGBER D E. Mechanical control of tissue and organ development[J]. Development, 2010, 137(9): 1407-1420. |
68 | ROCA-CUSACHS P, CONTE V, TREPAT X. Quantifying forces in cell biology[J]. Nature Cell Biology, 2017, 19(7): 742-751. |
69 | ZHENG X, BETJES M A, ENDER P, et al. Organoid cell fate dynamics in space and time[J]. Science Advances, 2023, 9(33): eadd6480. |
70 | YANG Q T, LIBERALI P. Collective behaviours in organoids[J]. Current Opinion in Cell Biology, 2021, 72: 81-90. |
71 | SONTHEIMER-PHELPS A, HASSELL B A, INGBER D E. Modelling cancer in microfluidic human organs-on-chips[J]. Nature Reviews Cancer, 2019, 19(2): 65-81. |
72 | HUH D, MATTHEWS B D, MAMMOTO A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. |
73 | XING Y F, LIU J Y, GUO X J, et al. Engineering organoid microfluidic system for biomedical and health engineering: a review[J]. Chinese Journal of Chemical Engineering, 2021, 30: 244-254. |
74 | VELASCO V, SHARIATI S A, ESFANDYARPOUR R. Microtechnology-based methods for organoid models[J]. Microsystems & Nanoengineering, 2020, 6: 76. |
75 | HOMAN K A, GUPTA N, KROLL K T, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro [J]. Nature Methods, 2019, 16(3): 255-262. |
76 | NIKOLAEV M, MITROFANOVA O, BROGUIERE N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826): 574-578. |
77 | TAN S Y, FENG X H, CHENG L K W, et al. Vascularized human brain organoid on-chip[J]. Lab on a Chip, 2023, 23(12): 2693-2709. |
78 | PATTANAYAK P, SINGH S K, GULATI M, et al. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives[J]. Microfluidics and Nanofluidics, 2021, 25(12): 99. |
79 | ZHENG Y, CHEN J M, CRAVEN M, et al. In vitro microvessels for the study of angiogenesis and thrombosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9342-9347. |
80 | WENSINK G E, ELIAS S G, MULLENDERS J, et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients[J]. NPJ Precision Oncology, 2021, 5(1): 30. |
81 | DEISSEROTH K. Optogenetics[J]. Nature Methods, 2011, 8(1): 26-29. |
82 | ZHANG K, DUAN L T, ONG Q, et al. Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth[J]. PLoS One, 2014, 9(3): e92917. |
83 | FEI K Y, ZHANG J Z, YUAN J, et al. Present application and perspectives of organoid imaging technology[J]. Bioengineering, 2022, 9(3): 121. |
84 | GABRIEL E, ALBANNA W, PASQUINI G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles[J]. Cell Stem Cell, 2021, 28(10): 1740-1757. e8. |
85 | MAO W, BUI H T D, CHO W, et al. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development[J]. Advanced Drug Delivery Reviews, 2023, 201: 115074. |
86 | POLSTEIN L R, GERSBACH C A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation[J]. Nature Chemical Biology, 2015, 11: 198-200. |
87 | SAMARAGE C R, WHITE M D, ÁLVAREZ Y D, et al. Cortical tension allocates the first inner cells of the mammalian embryo[J]. Developmental Cell, 2015, 34(4): 435-447. |
88 | XUE Y T, BROWNE A W, TANG W C, et al. Retinal organoids long-term functional characterization using two-photon fluorescence lifetime and hyperspectral microscopy[J]. Frontiers in Cellular Neuroscience, 2021, 15: 796903. |
89 | DELORIA A J, HAIDER S, DIETRICH B, et al. Ultra-high-resolution 3D optical coherence tomography reveals inner structures of human placenta-derived trophoblast organoids[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(8): 2368-2376. |
90 | SCHOLLER J, GROUX K, GOUREAU O, et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids[J]. Light, Science & Applications, 2020, 9: 140. |
91 | BEGHIN A, GRENCI G, SAHNI G, et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification[J]. Nature Methods, 2022, 19(7): 881-892. |
92 | RAWAL P, TRIPATHI D M, RAMAKRISHNA S, et al. Prospects for 3D bioprinting of organoids[J]. Bio-Design and Manufacturing, 2021, 4(3): 627-640. |
93 | ZHANG Q Z, SHI B, DING J X, et al. Polymer scaffolds facilitate spinal cord injury repair[J]. Acta Biomaterialia, 2019, 88: 57-77. |
94 | HOANG P, MA Z. Biomaterial-guided organoid engineering for modeling development and diseases[J]. SSRN Electronic Journal, 2020: 3708575. |
95 | LAWLOR K T, VANSLAMBROUCK J M, HIGGINS J W, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nature Materials, 2021, 20(2): 260-271. |
96 | KRATOCHVIL M J, SEYMOUR A J, LI T L, et al. Engineered materials for organoid systems[J]. Nature Reviews Materials, 2019, 4(9): 606-622. |
97 | BERNAL P N, BOUWMEESTER M, MADRID-WOLFF J, et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories[J]. Advanced Materials, 2022, 34(15): e2110054. |
98 | YOON J K. Advanced 3D cell culture platform for tissue engineering[J]. Tissue Engineering and Regenerative Medicine, 2023, 20(4): 519-521. |
99 | MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8): 773-785. |
100 | CARVALHO V, GONÇALVES I, LAGE T, et al. 3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review[J]. Sensors, 2021, 21(9): 3304. |
101 | BRASSARD J A, NIKOLAEV M, HÜBSCHER T, et al. Recapitulating macro-scale tissue self-organization through organoid bioprinting[J]. Nature Materials, 2021, 20(1): 22-29. |
102 | LEE G Y, KIM S J, PARK J K. Fabrication of a self-assembled and vascularized tumor array via bioprinting on a microfluidic chip[J]. Lab on a Chip, 2023, 23(18): 4079-4091. |
103 | GARRETA E, KAMM R D, CHUVA DE SOUSA LOPES S M, et al. Rethinking organoid technology through bioengineering[J]. Nature Materials, 2021, 20(2): 145-155. |
104 | YAO X R, KANG J H, KIM K P, et al. Production of highly uniform midbrain organoids from human pluripotent stem cells[J]. Stem Cells International, 2023, 2023: 3320211. |
105 | ZHUANG P, SUN A X, AN J, et al. 3D neural tissue models: from spheroids to bioprinting[J]. Biomaterials, 2018, 154: 113-133. |
106 | JIANG S W, ZHAO H R, ZHANG W J, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity[J]. Cell Reports Medicine, 2020, 1(9): 100161. |
107 | CAO Y X, TAN J Y, ZHAO H R, et al. Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration[J]. Nature Communications, 2022, 13(1): 7463. |
108 | FETAH K, TEBON P, GOUDIE M J, et al. The emergence of 3D bioprinting in organ-on-chip systems[J]. Progress in Biomedical Engineering, 2019, 1(1): 012001. |
109 | 王玥, 施慧琳, 靳晨琦, 等. 类器官领域发展现状及展望[J]. 中国生物工程杂志, 2023, 43(8): 1-10. |
WANG Y, SHI H L, JIN C Q, et al. Development status and prospects of organoids[J]. China Biotechnology, 2023, 43(8): 1-10. | |
110 | MÖLLER J, PÖRTNER R. Digital twins for tissue culture techniques — concepts, expectations, and state of the art[J]. Processes, 2021, 9(3): 447. |
111 | ONG H T, KARATAS E, GRENCI G, et al. Digitalized organoids: integrated pipeline for 3D high-speed analysis of organoid structures using multilevel segmentation and cellular topology[EB/OL]. bioRxiv, 2023: 2023. 2011. 2008. 566158[2023-12-01]. . |
112 | COOREY G, FIGTREE G A, FLETCHER D F, et al. The health digital twin to tackle cardiovascular disease-a review of an emerging interdisciplinary field[J]. NPJ Digital Medicine, 2022, 5(1): 126. |
113 | GONG J, LI M H, KANG J H, et al. Microfluidic techniques for next-generation organoid systems[J]. Advanced Materials Interfaces, 2022, 9(29): 2200846. |
114 | ROHAAN M W, WILGENHOF S, HAANEN J B A G. Adoptive cellular therapies: the current landscape[J]. Virchows Archiv, 2019, 474(4): 449-461. |
115 | FUHR A, KURTZ A, HIEPEN C, et al. Organoids as miniature twins—challenges for comparability and need for data standardization and access[J]. Organoids, 2022, 1(1): 28-36. |
[1] | 李石开, 曾东鳌, 杜方舟, 张京钟, 余爽. 血管化类器官的构建方法及生物材料[J]. 合成生物学, 2024, 5(4): 851-866. |
[2] | 郭伟, 付禹豪, 范盈盈, 周佳铃, 李鑫, 魏平. 哺乳动物细胞的趋化迁移及人工控制[J]. 合成生物学, 2022, 3(6): 1109-1125. |
[3] | 张璨, 施李杨, 戴建武. 细胞培养肉用生物材料的设计[J]. 合成生物学, 2022, 3(4): 676-689. |
[4] | 林芝, 胡致伟, 瞿旭东, 林双君. 苄基异喹啉类生物碱的微生物合成研究进展及挑战[J]. 合成生物学, 2021, 2(5): 716-733. |
[5] | 朱紫瑜, 王冠, 庄英萍. 大规模哺乳动物细胞培养工程的现状与展望[J]. 合成生物学, 2021, 2(4): 612-634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||