合成生物学 ›› 2022, Vol. 3 ›› Issue (1): 98-115.DOI: 10.12211/2096-8280.2021-078

• 特约评述 • 上一篇    下一篇

材料-生物杂化体的光驱生物催化

王雪云1,2, 杨文君1,2, 钟超1,2, 高翔1,2   

  1. 1.中国科学院深圳先进技术研究院,深圳合成生物学创新研究院,中国科学院定量工程生物学重点实验室,广东 深圳 518055
    2.中国科学院深圳先进技术研究院,深圳合成生物学创新研究院,材料合成生物学中心,广东 深圳 518055
  • 收稿日期:2021-07-23 修回日期:2021-10-14 出版日期:2022-02-28 发布日期:2022-03-14
  • 通讯作者: 高翔
  • 作者简介:王雪云(1993—),女,博士后。研究方向为半导体材料光驱动合成生物学。E-mail:xy.wang5@siat.ac.cn
    杨文君(1986—),女,博士后。研究方向为半导体材料光驱动合成生物学。E-mail:wj.yang@siat.ac.cn
    高翔(1987—),男,博士,副研究员。研究方向材料-细菌人工杂合系统的设计与应用。E-mail:gaoxiang@siat.ac.cn
  • 基金资助:
    国家自然科学基金面上项目(32171426);深圳先进技术研究院优青基金新引进人才项目(E1G022)

Biohybrid materials for light-driven biocatalysis

Xueyun WANG1,2, Wenjun YANG1,2, Chao ZHONG1,2, Xiang GAO1,2   

  1. 1.CAS Key Laboratory of Quantitative Engineering Biology,Shenzhen Institute of Synthetic Biology,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,Guangdong,China
    2.Center for Materials Synthetic Biology,Shenzhen Institute of Synthetic Biology,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,Guangdong,China
  • Received:2021-07-23 Revised:2021-10-14 Online:2022-02-28 Published:2022-03-14
  • Contact: Xiang GAO

摘要:

材料-生物杂化体的光驱生物催化,又称为半人工光合作用,利用高效捕获光能的材料与高选择性的生物催化相结合,从而实现光能到化学能高效、高特异性的转化。天然光合系统光能到化学能的转换效率低,进而发展了光能捕获和转换效率更高的人工光合作用,然而人工光合系统很难实现特异性合成高能量密度、高附加值的多碳化合物。基于材料-生物杂化体构建的半人工光合作用,同时具备材料和生物系统两者的优势,实现优势互补,为光能到化学能的转化提供新的机遇和应用。本文详细介绍了材料-生物杂化体的构建方式,杂化体通过光吸收剂与催化剂进行复合,其复合方式包括以天然光系统作为光吸收剂与纳米催化剂相结合,和以材料作为光吸收剂与酶或微生物全细胞催化剂相结合;分别总结不同复合方式的研究进展、不同系统之间的优缺点以及不同杂化体的应用方向,并对未来发展方向进行了展望。

关键词: 光合作用, 人工光合作用, 材料-生物杂化体

Abstract:

Biohybrid materials for light-driven biocatalysis, also named semi-artificial photosynthesis, are efficient light-harvesting materials that couple with highly specific biocatalysts for solar-to-chemical energy conversion. The natural photosynthesis that converts solar energy to chemical compounds is limited by the low efficiency of light absorption and the limited understanding of complicated cellular metabolism. Artificial photosynthesis, mimic to natural photosynthesis, has the potential for highly efficient solar-to-chemical energy conversion. However, the production of compounds containing two or more carbons with higher value through such a pathway is still challenging. Recent development in synthetic biology enables biological systems to produce more high valued and specifical chemicals. The semi-biological approaches have been developed for complementary advantages in materials science and biology, which gain new opportunities for solar-to-chemical energy conversion. The hybrid systems have been elaborated in a variety of ways, such as biological antenna as a light-harvester for nanoparticle catalysts or materials functioning as a light capturer to couple conversion catalyzed by enzymes and bacterial whole cells. The biological photosensitizer-material hybrids that use photosystems Ⅰ/Ⅱ and photosensitizing proteins to harvest light energy for synthetic materials through catalyzing the reduction reactions have been studied with a focus primarily on hydrogen production. The pure isolated biological photosensitizers are good candidates for exploring the electron transport pathway. However, photosystems Ⅰ/Ⅱ can only maintain activity for a couple of hours, making them difficult for applying to industrial processes, but the material antenna-based biohybrids take the advantage of more stable semiconductors that can be engineered to produce lots of specific chemicals. In this article, advantages and recent processes on the application of the hybrid systems are commented, and their future development is highlighted.

Key words: photosynthesis, artificial photosynthesis, material biohybrids

中图分类号: