1 |
LI D Y, GAO C H, ZHANG F M, et al. Seven facts and five initiatives for gut microbiome research[J]. Protein & Cell, 2020, 11(6): 391-400.
|
2 |
BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486.
|
3 |
FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms: an emergent form of bacterial life[J]. Nature Reviews Microbiology, 2016, 14(9): 563-575.
|
4 |
VAN DEN BERG N I, MACHADO D, SANTOS S, et al. Ecological modelling approaches for predicting emergent properties in microbial communities[J]. Nature Ecology & Evolution, 2022, 6(7): 855-865.
|
5 |
SALEEM M, HU J E, JOUSSET A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 145-168.
|
6 |
韦中, 沈宗专, 杨天杰, 等. 从抑病土壤到根际免疫:概念提出与发展思考[J]. 土壤学报, 2021, 58(4): 814-824.
|
|
WEI Z, SHEN Z Z, YANG T J, et al. From suppressive soil to rhizosphere immunity: towards an ecosystem thinking for soil-borne pathogen control[J]. Acta Pedologica Sinica, 2021, 58(4): 814-824.
|
7 |
MENDES R, KRUIJT M, DE BRUIJN I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033): 1097-1100.
|
8 |
LI Z F, BAI X L, JIAO S, et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome, 2021, 9(1): 217.
|
9 |
TRIVEDI P, LEACH J E, TRINGE S G, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621.
|
10 |
KE J, WANG B, YOSHIKUNI Y. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture[J]. Trends in Biotechnology, 2021, 39(3): 244-261.
|
11 |
VRANCKEN G, GREGORY A C, HUYS G R B, et al. Synthetic ecology of the human gut microbiota[J]. Nature Reviews Microbiology, 2019, 17(12): 754-763.
|
12 |
VORHOLT J A, VOGEL C, CARLSTRÖM C I, et al. Establishing causality: opportunities of synthetic communities for plant microbiome research[J]. Cell Host & Microbe, 2017, 22(2): 142-155.
|
13 |
HU J L, AMOR D R, BARBIER M, et al. Emergent phases of ecological diversity and dynamics mapped in microcosms[J]. Science, 2022, 378(6615): 85-89.
|
14 |
NIU B, PAULSON J N, ZHENG X Q, et al. Simplified and representative bacterial community of maize roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): E2450-E2459.
|
15 |
WAGNER M R, TANG C, SALVATO F, et al. Microbe-dependent heterosis in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(30): e2021965118.
|
16 |
YANG N, NESME J, RØDER H L, et al. Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis [J]. NPJ Biofilms and Microbiomes, 2021, 7: 82.
|
17 |
VOS M, WOLF A B, JENNINGS S J, et al. Micro-scale determinants of bacterial diversity in soil[J]. FEMS Microbiology Reviews, 2013, 37(6): 936-954.
|
18 |
YOUNG I M, CRAWFORD J W. Interactions and self-organization in the soil-microbe complex[J]. Science, 2004, 304(5677): 1634-1637.
|
19 |
CAI P, SUN X J, WU Y C, et al. Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization[J]. Soil Ecology Letters, 2019, 1(3/4): 85-93.
|
20 |
KUZYAKOV Y, BLAGODATSKAYA E. Microbial hotspots and hot moments in soil: concept & review[J]. Soil Biology and Biochemistry, 2015, 83: 184-199.
|
21 |
GOLDFORD J, LU N X, BAJIĆ D, et al. Emergent simplicity in microbial community assembly[J]. Science, 2018, 361: 469-474.
|
22 |
GAO C H, CAO H, JU F, et al. Emergent transcriptional adaption facilitates convergent succession within a synthetic community[J]. ISME Communications, 2021, 1: 46.
|
23 |
NUNAN N. The microbial habitat in soil: scale, heterogeneity and functional consequences[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(4): 425-429.
|
24 |
陈沫先, 韦中, 田亮, 等. 合成微生物群落的构建与应用[J]. 科学通报, 2021, 66(3): 273-283.
|
|
CHEN M X, WEI Z, TIAN L, et al. Design and application of synthetic microbial communities[J]. Chinese Science Bulletin, 2021, 66(3): 273-283.
|
25 |
韦中, 杨天杰, 任鹏, 等. 合成菌群在根际免疫研究中的现状与未来[J]. 南京农业大学学报, 2021, 44(4): 597-603.
|
|
WEI Z, YANG T J, REN P, et al. Advances and perspectives on synthetic microbial community in the study of rhizosphere immunity[J]. Journal of Nanjing Agricultural University, 2021, 44(4): 597-603.
|
26 |
SIMONIN M, BRIAND M, CHESNEAU G, et al. Seed microbiota revealed by a large-scale meta-analysis including 50 plant species[J]. New Phytologist, 2022, 234(4): 1448-1463.
|
27 |
DEBRAY R, HERBERT R A, JAFFE A L, et al. Priority effects in microbiome assembly[J]. Nature Reviews Microbiology, 2022, 20(2): 109-121.
|
28 |
WANG M Y, EYRE A W, THON M R, et al. Dynamic changes in the microbiome of rice during shoot and root growth derived from seeds[J]. Frontiers in Microbiology, 2020, 11: 559728.
|
29 |
FORT T, PAUVERT C, ZANNE A, et al. Maternal effects shape the seed mycobiome in Quercus petraea [J]. New Phytologist, 2021, 230(4): 1594-1608.
|
30 |
WEI Z, GU Y A, FRIMAN V P, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9): eaaw0759.
|
31 |
WALSH C M, BECKER-UNCAPHER I, CARLSON M, et al. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes[J]. The ISME Journal, 2021, 15(9): 2748-2762.
|
32 |
YU P, HE X M, BAER M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4): 481-499.
|
33 |
HE D X, SINGH S K, PENG L, et al. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance[J]. The ISME Journal, 2022, 16(11): 2622-2632.
|
34 |
LIU X Y, MATSUMOTO H, LV T X, et al. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease[J]. Nature Microbiology, 2023, 8(8): 1419-1433.
|
35 |
HERPELL J B, ALICKOVIC A, DIALLO B, et al. Phyllosphere symbiont promotes plant growth through ACC deaminase production[J]. The ISME Journal, 2023, 17(8): 1267-1277.
|
36 |
LYNCH J M, WHIPPS J M. Substrate flow in the rhizosphere[J]. Plant and Soil, 1990, 129(1): 1-10.
|
37 |
BADRI D V, VIVANCO J M. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6): 666-681.
|
38 |
ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470-480.
|
39 |
HARBORT C J, HASHIMOTO M, INOUE H, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis [J]. Cell Host & Microbe, 2020, 28(6): 825-837.e6.
|
40 |
SONG Y, WILSON A J, ZHANG X C, et al. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species[J]. Nature Plants, 2021, 7(5): 644-654.
|
41 |
YANG K M, FU R X, FENG H C, et al. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota[J]. Molecular Plant, 2023, 16(9): 1379-1395.
|
42 |
KWAK M J, KONG H G, CHOI K H, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11): 1100-1109.
|
43 |
BERNAOLA L, COSME M, SCHNEIDER R W, et al. Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms[J]. Frontiers in Plant Science, 2018, 9: 747.
|
44 |
CORDOVEZ V, DINI-ANDREOTE F, CARRIÓN V J, et al. Ecology and evolution of plant microbiomes[J]. Annual Review of Microbiology, 2019, 73: 69-88.
|
45 |
TOJU H, PEAY K G, YAMAMICHI M, et al. Core microbiomes for sustainable agroecosystems[J]. Nature Plants, 2018, 4(5): 247-257.
|
46 |
BALDRIAN P. Forest microbiome: diversity, complexity and dynamics[J]. FEMS Microbiology Reviews, 2017, 41(2): 109-130.
|
47 |
KELVIN LEE K W, HOONG YAM J K, MUKHERJEE M, et al. Interspecific diversity reduces and functionally substitutes for intraspecific variation in biofilm communities[J]. The ISME Journal, 2016, 10(4): 846-857.
|
48 |
VAN ELSAS J D, CHIURAZZI M, MALLON C A, et al. Microbial diversity determines the invasion of soil by a bacterial pathogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4): 1159-1164.
|
49 |
XU X H, ZARECKI R, MEDINA S, et al. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions[J]. The ISME Journal, 2019, 13(2): 494-508.
|
50 |
NIU B, WANG W X, YUAN Z B, et al. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease[J]. Frontiers in Microbiology, 2020, 11: 585404.
|
51 |
JIANG M T, DELGADO-BAQUERIZO M, YUAN M, et al. Home-based microbial solution to boost crop growth in low-fertility soil[J]. New Phytologist, 2023, 239(2): 752-765.
|
52 |
DURÁN P, THIERGART T, GARRIDO-OTER R, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival[J]. Cell, 2018, 175(4): 973-983.e14.
|
53 |
LI M, WEI Z, WANG J N, et al. Facilitation promotes invasions in plant-associated microbial communities[J]. Ecology Letters, 2019, 22(1): 149-158.
|
54 |
GU S H, WEI Z, SHAO Z Y, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020, 5(8): 1002-1010.
|
55 |
LI M, POMMIER T, YIN Y, et al. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition[J]. The ISME Journal, 2022, 16(3): 868-875.
|
56 |
SUN X J, CAI P, SØRENSEN S J, et al. Interspecific interactions in dual-species biofilms of soil bacteria: effects of fertilization practices[J]. Journal of Soils and Sediments, 2020, 20(3): 1494-1501.
|
57 |
GAO C H, ZHANG M, WU Y C, et al. Divergent influence to a pathogen invader by resident bacteria with different social interactions[J]. Microbial Ecology, 2019, 77(1): 76-86.
|
58 |
FLEMMING H C, WUERTZ S. Bacteria and archaea on Earth and their abundance in biofilms[J]. Nature Reviews Microbiology, 2019, 17(4): 247-260.
|
59 |
PAPENFORT K, BASSLER B L. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2016, 14(9): 576-588.
|
60 |
MA W T, PENG D H, WALKER S L, et al. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides[J]. NPJ Biofilms and Microbiomes, 2017, 3: 4.
|
61 |
BOYD C D, O'TOOLE G A. Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems[J]. Annual Review of Cell and Developmental Biology, 2012, 28: 439-462.
|
62 |
SUN X L, XU Z H, XIE J Y, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. The ISME Journal, 2022, 16(3): 774-787.
|
63 |
BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9): 567-576.
|
64 |
FINKEL O M, SALAS-GONZÁLEZ I, CASTRILLO G, et al. A single bacterial genus maintains root growth in a complex microbiome[J]. Nature, 2020, 587(7832): 103-108.
|
65 |
XIA L M, MIAO Y Z, CAO A L, et al. Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in Bacillus [J]. Nature Communications, 2022, 13: 1023.
|
66 |
KRAMER J, ÖZKAYA Ö, KÜMMERLI R. Bacterial siderophores in community and host interactions[J]. Nature Reviews Microbiology, 2020, 18(3): 152-163.
|
67 |
ARNAOUTELI S, BAMFORD N C, STANLEY-WALL N R, et al. Bacillus subtilis biofilm formation and social interactions[J]. Nature Reviews Microbiology, 2021, 19(9): 600-614.
|