合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 1031-1059.DOI: 10.12211/2096-8280.2022-014

• 特约评述 • 上一篇    

电能细胞的合成生物学设计构建

由紫暄1,2,3, 李锋1,2,3, 宋浩1,2,3   

  1. 1.天津大学化工学院,天津 300072
    2.天津大学合成生物学前沿科学中心和系统生物工程教育部重点实验室,天津 300072
    3.天津大学化工协同创新中心合成生物学研究平台,天津 300072
  • 收稿日期:2022-03-01 修回日期:2022-04-19 出版日期:2022-10-31 发布日期:2022-11-16
  • 通讯作者: 李锋,宋浩
  • 作者简介:由紫暄(1997—),女,硕士研究生,研究方向为电能细胞的合成生物学研究。
    由紫暄(1997—),女,硕士研究生,研究方向为电能细胞的合成生物学研究。E-mail:youzixuan_yzx@tju.edu.cn
    李锋(1988—),男,助理教授,硕士生导师。研究方向为光电遗传学在物质、能量代谢中的应用。E-mail:messilifeng@163.com
    宋浩(1973—),男 ,教授、博士生导师。研究方向为能量代谢与光-电遗传学,生物制药。E-mail:hsong@tju.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFA0901300);国家自然科学基金(32071411);天津市科技计划(20JCQNJC00830);天津市教育部研究生科研创新项目(2020YJSB045)

Design and construction of electroactive cells by synthetic biology strategies

Zixuan YOU1,2,3, Feng LI1,2,3, Hao SONG1,2,3   

  1. 1.School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
    2.Frontiers Science Center for Synthetic Biology (Ministry of Education),Tianjin University,Tianjin 300072,China
    3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
  • Received:2022-03-01 Revised:2022-04-19 Online:2022-10-31 Published:2022-11-16
  • Contact: Feng LI, Hao SONG

摘要:

电能细胞具有与外界环境进行双向电子交换的能力,包括向外界环境释放电子的产电细胞,以及从外界环境获取电子的噬电细胞,在微生物电化学系统中发挥微生物电催化剂的核心作用。以电能细胞为核心的微生物电化学系统在生态环境治理、绿色能源开发、化学品高效合成等方面有着广泛应用。但是野生电能细胞因其摄取底物能力弱、胞内电子通量小、双向跨膜电子传递效率低、生物膜形成能力差等原因,化学能到电能的双向转化效率受到极大限制,是实现微生物电化学系统大规模产业化应用的核心瓶颈。本综述聚焦近5年电能细胞合成生物学改造的最新研究进展,通过分析双向电子传递的分子机制,分类汇总产电细胞和噬电细胞的合成生物学改造策略:①工程产电细胞(强化产电细胞的胞内电子生成、胞外传递效率,具体为拓宽底物谱、增强还原力转化,提高胞外传递能力、促进电极生物膜形成);②工程噬电细胞(强化噬电细胞胞外电子摄取、还原力转化、产物合成效率,包括提高噬电细胞电子摄取和还原力转化,调控细胞代谢路径电合成化学品和生物燃料)。最后,展望了未来高效电能细胞和微生物电化学系统的设计与构建。

关键词: 电能细胞, 合成生物学, 生物电催化, 双向电子传递, 电活性生物膜

Abstract:

Bioelectrocatalytic systems (BESs) employ redox reactions of electroactive cells on electrodes to integrate biocatalysis and electrocatalysis, providing a green, economical and sustainable approach for energy and chemical production. Electroactive cells, including exoelectrogens that release electrons to the environment and electrotrophs that obtain electrons from the environment, have the ability to exchange electrons in inward and outward directions with the external environment and play a central role as microbial electrocatalysts in BESs. In the last decade, with in-depth researches on the electron transfer mechanisms including direct and indirect electron transfer pathways of electroactive cells, BESs with electroactive cells as the core component have been widely used in ecological environment management, green energy development, high-value chemical synthesis, and so on. However, the inefficient energy conversion rate of wild-type electroactive cells remains a major bottleneck for large-scale applications of BESs. This bottleneck is mainly caused by narrow available substrate spectrum, slow intracellular electron generation rate, weak bidirectional electron transfer capability, unstable biofilm structure, and low microbial electrosynthesis efficiency. Thus, this review focuses on the latest research progresses in the synthetic biology engineering of electroactive cells in the past five years. By disassembling and analyzing the bidirectional electron transfer mechanisms, the synthetic biology strategies are classified and summarized for electrogenic cells and electrophic cells, respectively. Electrogenic cells can be engineered via strengthening the intracellular electron production and extracellular transfer efficiency, with a special focus on broadening the substrate spectrum, improving intracellular electron release, accelerating extracellular electron transfer and strengthening electroactive biofilms formation. In terms of electrophic cells, they can be engineered via enhancing electrophic electron uptake and conversion as well as product synthesis efficiency, specifically promoting extracellular electron uptake and conversion and regulating cellular metabolic pathways to electrosynthesize chemicals and biofuels. Finally, perspectives on further engineering of electroactive cells and potential applications of BESs are proposed.

Key words: electroactive cells, synthetic biology, bioelectrocatalysis, bidirection electron transfer, electroactive biofilm

中图分类号: