合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 1031-1059.DOI: 10.12211/2096-8280.2022-014
• 特约评述 • 上一篇
由紫暄1,2,3, 李锋1,2,3, 宋浩1,2,3
收稿日期:
2022-03-01
修回日期:
2022-04-19
出版日期:
2022-10-31
发布日期:
2022-11-16
通讯作者:
李锋,宋浩
作者简介:
由紫暄(1997—),女,硕士研究生,研究方向为电能细胞的合成生物学研究。基金资助:
Zixuan YOU1,2,3, Feng LI1,2,3, Hao SONG1,2,3
Received:
2022-03-01
Revised:
2022-04-19
Online:
2022-10-31
Published:
2022-11-16
Contact:
Feng LI, Hao SONG
摘要:
电能细胞具有与外界环境进行双向电子交换的能力,包括向外界环境释放电子的产电细胞,以及从外界环境获取电子的噬电细胞,在微生物电化学系统中发挥微生物电催化剂的核心作用。以电能细胞为核心的微生物电化学系统在生态环境治理、绿色能源开发、化学品高效合成等方面有着广泛应用。但是野生电能细胞因其摄取底物能力弱、胞内电子通量小、双向跨膜电子传递效率低、生物膜形成能力差等原因,化学能到电能的双向转化效率受到极大限制,是实现微生物电化学系统大规模产业化应用的核心瓶颈。本综述聚焦近5年电能细胞合成生物学改造的最新研究进展,通过分析双向电子传递的分子机制,分类汇总产电细胞和噬电细胞的合成生物学改造策略:①工程产电细胞(强化产电细胞的胞内电子生成、胞外传递效率,具体为拓宽底物谱、增强还原力转化,提高胞外传递能力、促进电极生物膜形成);②工程噬电细胞(强化噬电细胞胞外电子摄取、还原力转化、产物合成效率,包括提高噬电细胞电子摄取和还原力转化,调控细胞代谢路径电合成化学品和生物燃料)。最后,展望了未来高效电能细胞和微生物电化学系统的设计与构建。
中图分类号:
由紫暄, 李锋, 宋浩. 电能细胞的合成生物学设计构建[J]. 合成生物学, 2022, 3(5): 1031-1059.
Zixuan YOU, Feng LI, Hao SONG. Design and construction of electroactive cells by synthetic biology strategies[J]. Synthetic Biology Journal, 2022, 3(5): 1031-1059.
图1 双向电子传递机制由细胞色素或纳米线介导的直接电子传递机制(左);由电子传递载体介导的间接电子传递机制(右)
Fig. 1 Bi-directional electron transfer mechanism(Left) Direct electron transfer via cytochromes and conductive nanowires; (Right) Electron shuttles mediated electron transfer
电能细胞 | 合成生物学策略 | 工程结果 |
---|---|---|
底物代谢效率的合成生物学改造 | ||
S.oneidensis | 强化乳酸利用关键因子CRP表达,增强菌株对乳酸的利用能力[ | 最大电流密度约40 mA/m2 |
异源表达视紫红质基因,通过光驱动改变膜电位,增强乳酸的摄取[ | 平均电流密度达0.39 A/m2 | |
异源表达葡萄糖转运基因和葡萄糖激酶基因,增强菌株葡萄糖代谢能力[ | 最大电流输出0.085 mA | |
异源表达木糖转运蛋白、异构酶等构建木糖代谢途径[ | 最大功率密度2.1 mW/m2 | |
异源表达乙酸辅酶A基因(ato1,ato2),强化柠檬酸合酶基因gtlA,构建乙酸代谢路径[ | 最大功率密度8.3 mW/m2 | |
胞内可释放电子池的合成生物学改造 | ||
P.aeruginosa | 过表达NAD+合成酶基因nadE,扩充胞内NAD(H/+)总量[ | 最大功率密度4.0 mW/m2 |
S.oneidensis | 过表达ycel、pncB、nadM、nadD*、nadE*基因,增强NAD+的生物合成[ | 最大功率密度162.8 mW/m2 |
过表达gapA2、pflB、fdh*、mdh基因,强化NADH的合成[ | 最大功率密度105.8 mW/m2 | |
E.coli | 破坏乳酸脱氢酶基因ldhA,释放储存在胞内中间代谢物的电子[ | 最大功率密度3.0 mW/m2 |
过表达非质子泵NADH脱氢酶NDH-2,使更多电子通过氧化呼吸链流入EET途径[ | 输出电流4.7 μA | |
构建C3N代谢通路,获得高效的NAD+代谢途径[ | NAD(H)浓度约6 mmol/L | |
胞外电子传递的合成生物学改造 | ||
E.coli | 通过引入S.oneidensis的MtrCAB色素系统使得E.coli具备胞外电子传递能力[ | Fe(Ⅲ)还原速率达83 μmol/(L·d) |
构建S.oneidensis和E.coli细胞色素融合表达系统[ | 电流密度达到25.32 mA/m2 | |
异源表达PCA合成路径phzA1B1C1D1E1F1G1基因簇,以提高间接胞外电子传递速率[ | 最大功率密度为181.1 mW/m2 | |
S.oneidensis | 过表达内膜细胞色素CymA,加速电子传递至末端周质还原酶[ | 功率达到0.13 mW |
敲除周质色素蛋白napB、fccA、tsdB并过表达细胞色素cctA,降低周质细胞色素复杂性[ | 最高功率密度达到436.5 mW/m2 | |
异源表达来自B.subtilis的核黄素合成基因簇ribADEHC,以提高菌株的胞外电子传递速率[ | 最大功率输出为233.0 mW/m2 | |
强化核黄素表达,结合孔蛋白增强分泌,添加材料rGO,构建三维杂合生物膜系统[ | 最大功率输出达2630 mW/m2 | |
异源构建PCA合成路径和ombB-omaB-omcB-omcS直接电子传递链[ | 最大电流密度达310.2 mA/m2 | |
P.aeruginosa | 通过截断PaPilA C端并增加N端 α-螺旋区的芳香族氨基酸含量,提高菌毛导电率[ | 最大电流达130 μA |
过表达甲基转移酶基因phzM,增强菌株胞外电子传递载体-绿脓菌素的合成[ | 最大功率密度达16.67 mW/m2 | |
G.sulfurreducens | 异源表达来自G.metallireducens的pilA基因,增强菌毛导电率[ | pili导电率为277 S/cm |
电活性生物膜的合成生物学改造 | ||
S.oneidensis | 过表达ydeH基因,增强菌株生物膜形成能力[ | 最大功率密度达167.6 mW/m2 |
过表达cyaC基因增加菌株胞内cAMP浓度,提高菌株电流输出密度[ | 最大电流密度达356 mA/m2 | |
G.sulfurreducens | 过表达GSU1501基因促进胞外多糖分泌,促进生物膜形成,提高c型细胞色素丰度[ | Fe(Ⅲ)还原速率达1.75 mmol/(L·d) |
P.aeruginosa | 敲除RpoS基因促进吩嗪类物质合成,提高胞外电子通量[ | 最大电流密度达4.5 μA/cm2 |
过表达irrE基因,强化参与胞内代谢和EET过程[ | 最大功率密度达56.0 mW/m2 | |
构建irrE突变基因文库,增强细胞环境适应性和产电性能[ | 最大功率密度达149.2 mW/m2 |
表1 产电细胞的合成生物学改造汇总
Tab. 1 Summary of engineering exoelectrogens by synthetic biology
电能细胞 | 合成生物学策略 | 工程结果 |
---|---|---|
底物代谢效率的合成生物学改造 | ||
S.oneidensis | 强化乳酸利用关键因子CRP表达,增强菌株对乳酸的利用能力[ | 最大电流密度约40 mA/m2 |
异源表达视紫红质基因,通过光驱动改变膜电位,增强乳酸的摄取[ | 平均电流密度达0.39 A/m2 | |
异源表达葡萄糖转运基因和葡萄糖激酶基因,增强菌株葡萄糖代谢能力[ | 最大电流输出0.085 mA | |
异源表达木糖转运蛋白、异构酶等构建木糖代谢途径[ | 最大功率密度2.1 mW/m2 | |
异源表达乙酸辅酶A基因(ato1,ato2),强化柠檬酸合酶基因gtlA,构建乙酸代谢路径[ | 最大功率密度8.3 mW/m2 | |
胞内可释放电子池的合成生物学改造 | ||
P.aeruginosa | 过表达NAD+合成酶基因nadE,扩充胞内NAD(H/+)总量[ | 最大功率密度4.0 mW/m2 |
S.oneidensis | 过表达ycel、pncB、nadM、nadD*、nadE*基因,增强NAD+的生物合成[ | 最大功率密度162.8 mW/m2 |
过表达gapA2、pflB、fdh*、mdh基因,强化NADH的合成[ | 最大功率密度105.8 mW/m2 | |
E.coli | 破坏乳酸脱氢酶基因ldhA,释放储存在胞内中间代谢物的电子[ | 最大功率密度3.0 mW/m2 |
过表达非质子泵NADH脱氢酶NDH-2,使更多电子通过氧化呼吸链流入EET途径[ | 输出电流4.7 μA | |
构建C3N代谢通路,获得高效的NAD+代谢途径[ | NAD(H)浓度约6 mmol/L | |
胞外电子传递的合成生物学改造 | ||
E.coli | 通过引入S.oneidensis的MtrCAB色素系统使得E.coli具备胞外电子传递能力[ | Fe(Ⅲ)还原速率达83 μmol/(L·d) |
构建S.oneidensis和E.coli细胞色素融合表达系统[ | 电流密度达到25.32 mA/m2 | |
异源表达PCA合成路径phzA1B1C1D1E1F1G1基因簇,以提高间接胞外电子传递速率[ | 最大功率密度为181.1 mW/m2 | |
S.oneidensis | 过表达内膜细胞色素CymA,加速电子传递至末端周质还原酶[ | 功率达到0.13 mW |
敲除周质色素蛋白napB、fccA、tsdB并过表达细胞色素cctA,降低周质细胞色素复杂性[ | 最高功率密度达到436.5 mW/m2 | |
异源表达来自B.subtilis的核黄素合成基因簇ribADEHC,以提高菌株的胞外电子传递速率[ | 最大功率输出为233.0 mW/m2 | |
强化核黄素表达,结合孔蛋白增强分泌,添加材料rGO,构建三维杂合生物膜系统[ | 最大功率输出达2630 mW/m2 | |
异源构建PCA合成路径和ombB-omaB-omcB-omcS直接电子传递链[ | 最大电流密度达310.2 mA/m2 | |
P.aeruginosa | 通过截断PaPilA C端并增加N端 α-螺旋区的芳香族氨基酸含量,提高菌毛导电率[ | 最大电流达130 μA |
过表达甲基转移酶基因phzM,增强菌株胞外电子传递载体-绿脓菌素的合成[ | 最大功率密度达16.67 mW/m2 | |
G.sulfurreducens | 异源表达来自G.metallireducens的pilA基因,增强菌毛导电率[ | pili导电率为277 S/cm |
电活性生物膜的合成生物学改造 | ||
S.oneidensis | 过表达ydeH基因,增强菌株生物膜形成能力[ | 最大功率密度达167.6 mW/m2 |
过表达cyaC基因增加菌株胞内cAMP浓度,提高菌株电流输出密度[ | 最大电流密度达356 mA/m2 | |
G.sulfurreducens | 过表达GSU1501基因促进胞外多糖分泌,促进生物膜形成,提高c型细胞色素丰度[ | Fe(Ⅲ)还原速率达1.75 mmol/(L·d) |
P.aeruginosa | 敲除RpoS基因促进吩嗪类物质合成,提高胞外电子通量[ | 最大电流密度达4.5 μA/cm2 |
过表达irrE基因,强化参与胞内代谢和EET过程[ | 最大功率密度达56.0 mW/m2 | |
构建irrE突变基因文库,增强细胞环境适应性和产电性能[ | 最大功率密度达149.2 mW/m2 |
电能细胞 | 合成生物学策略 | 工程结果 |
---|---|---|
工程强化噬电细胞电子摄取和转化 | ||
S.oneidensis | 表达光驱动质子泵,强化丁二醇脱氢酶表达并敲除氢化酶基因hyaB、hydA,驱动丁二醇合成[ | 2,3-丁二醇合成量10.06 mmol/L |
E.coli | 异源表达细胞色素蛋白MtrCAB、FccA、CymA碳酸氢盐转运蛋白和碳酸酐酶基因,构建产琥珀酸细胞工厂[ | 琥珀酸产电达30.56 mmol/L |
S.elongatus PCC 7942 | 异源表达色素蛋白OmcS和nif基因,促进N2固定[ | NH3 20 h产率达295.7 μmol/L |
工程噬电细胞代谢路径电合成化学品和生物燃料 | ||
R.eutropha | 敲除聚羟基丁酸合成基因簇,异源表达异丁醇合成路径关键基因alsS、ilvC、ilvD、kivd和yqhD,使代谢流向异丁醇和3-甲基-1-丁醇合成[ | 异丁醇、3-甲基-1-丁醇产量达140 mg/L |
破坏聚羟基丁酸酯合成,并强化异丙醇合成路径,使代谢流向异丙醇合成[ | 异丙醇产量达216 mg/L | |
异源表达核酮糖-1,5-二磷酸羧化酶,强化PHB合成[ | PHB产量达485 mg/L | |
异源过表达的甲羟戊酸途径酶法尼基焦磷酸合酶ERG20、IPP异构酶fni和α-葎草烯合酶(ZSSI),促进α-葎草烯合成[ | α-葎草烯产量达10.8 mg/L | |
表达番茄红素途径基因CrtEBI2,促进番茄红素合成[ | 番茄红素产量达1.73 mg/L | |
S.cerevisiae | 异源表达氧甾醇7α-羟化酶,促进7α-OH-DHEA合成[ | 7α-OH-DHEA产量达288.6 mg/L |
R.palustris | 异源引入丁醇生物合成途径phaABJ、ter、adhE2基因,强化丁醇合成[ | 丁醇产量达0.91 mg/L± 0.07 mg/L |
表2 噬电细胞的合成生物学改造汇总
Tab.2 Summary of engineering electrotrophs by synthetic biology
电能细胞 | 合成生物学策略 | 工程结果 |
---|---|---|
工程强化噬电细胞电子摄取和转化 | ||
S.oneidensis | 表达光驱动质子泵,强化丁二醇脱氢酶表达并敲除氢化酶基因hyaB、hydA,驱动丁二醇合成[ | 2,3-丁二醇合成量10.06 mmol/L |
E.coli | 异源表达细胞色素蛋白MtrCAB、FccA、CymA碳酸氢盐转运蛋白和碳酸酐酶基因,构建产琥珀酸细胞工厂[ | 琥珀酸产电达30.56 mmol/L |
S.elongatus PCC 7942 | 异源表达色素蛋白OmcS和nif基因,促进N2固定[ | NH3 20 h产率达295.7 μmol/L |
工程噬电细胞代谢路径电合成化学品和生物燃料 | ||
R.eutropha | 敲除聚羟基丁酸合成基因簇,异源表达异丁醇合成路径关键基因alsS、ilvC、ilvD、kivd和yqhD,使代谢流向异丁醇和3-甲基-1-丁醇合成[ | 异丁醇、3-甲基-1-丁醇产量达140 mg/L |
破坏聚羟基丁酸酯合成,并强化异丙醇合成路径,使代谢流向异丙醇合成[ | 异丙醇产量达216 mg/L | |
异源表达核酮糖-1,5-二磷酸羧化酶,强化PHB合成[ | PHB产量达485 mg/L | |
异源过表达的甲羟戊酸途径酶法尼基焦磷酸合酶ERG20、IPP异构酶fni和α-葎草烯合酶(ZSSI),促进α-葎草烯合成[ | α-葎草烯产量达10.8 mg/L | |
表达番茄红素途径基因CrtEBI2,促进番茄红素合成[ | 番茄红素产量达1.73 mg/L | |
S.cerevisiae | 异源表达氧甾醇7α-羟化酶,促进7α-OH-DHEA合成[ | 7α-OH-DHEA产量达288.6 mg/L |
R.palustris | 异源引入丁醇生物合成途径phaABJ、ter、adhE2基因,强化丁醇合成[ | 丁醇产量达0.91 mg/L± 0.07 mg/L |
1 | LOVLEY D R, HOLMES D E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms [J]. Nature Reviews Microbiology, 2021, 20(1): 1-15. |
2 | LOGAN B E, ROSSI R, RAGAB A, et al. Electroactive microorganisms in bioelectrochemical systems [J]. Nature Reviews Microbiology, 2019, 17(5): 307-319. |
3 | KUMAR A, HSU L H-H, KAVANAGH P, et al. The ins and outs of microorganism-electrode electron transfer reactions [J]. Nature Reviews Chemistry, 2017, 1(3): 0024. |
4 | KOCH C, HARNISCH F. Is there a specific ecological niche for electroactive microorganisms? [J]. ChemElectroChem, 2016, 3(9): 1282-1295. |
5 | CHEN H, SIMOSKA O, LIM K, et al. Fundamentals, applications, and future directions of bioelectrocatalysis [J]. Chemical Reviews, 2020, 120(23): 12903-12993. |
6 | SUN M, ZHAI L F, LI W W, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells [J]. Chemical Society Reviews, 2016, 45(10): 2847-2870. |
7 | LIANG P, DUAN R, JIANG Y, et al. Corrigendum to “one-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment” [J]. Water Research, 2019, 166: 114878. |
8 | HUANG J J, FENG H J, HUANG L J, et al. Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure [J]. Waste Management, 2020, 103: 61-66. |
9 | SEVDA S, ABU-REESH I M, YUAN H, et al. Bioelectricity generation from treatment of petroleum refinery wastewater with simultaneous seawater desalination in microbial desalination cells [J]. Energy Conversion and Management, 2017, 141: 101-107. |
10 | CHANDRASEKHAR K, KUMAR A N, KUMAR G, et al. Electro-fermentation for biofuels and biochemicals production: Current status and future directions [J]. Bioresource Technology, 2021, 323: 124598. |
11 | MOSCOVIZ R, TOLEDO-ALARCÓN J, TRABLY E, et al. Electro-fermentation: how to drive fermentation using electrochemical systems [J]. Trends in Biotechnology, 2016, 34(11): 856-865. |
12 | SCHIEVANO A, PEPE SCIARRIA T, VANBROEKHOVEN K, et al. Electro-fermentation-merging electrochemistry with fermentation in industrial applications [J]. Trends in Biotechnology, 2016, 34(11): 866-878. |
13 | PREVOTEAU A, CARVAJAL-ARROYO J M, GANIGUE R, et al. Microbial electrosynthesis from CO2: forever a promise? [J]. Current Opinion in Biotechnology, 2020, 62: 48-57. |
14 | JIANG Y, MAY H D, LU L, et al. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation [J]. Water Research, 2019, 149: 42-55. |
15 | SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production [J]. Science, 2016, 351(6268): 74-77. |
16 | WANG J W, CHEN Q W, LUO G F, et al. A self-driven bioreactor based on bacterium-metal-organic framework biohybrids for boosting chemotherapy via cyclic lactate catabolism [J]. ACS Nano, 2021, 15: 17870-17884 |
17 | FAN G, DUNDAS C M, GRAHAM A J, et al. Shewanella oneidensis as a living electrode for controlled radical polymerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): 4559-4564. |
18 | SHARMA D, GULATI S S, SHARMA N, et al. Correction to: sustainable synthesis of silver nanoparticles using various biological sources and waste materials: a review[J/OL]. Emergent Materials, 2021. |
19 | KONG F Y, REN H Y, PAVLOSTATHIS S G, et al. Enhanced azo dye decolorization and microbial community analysis in a stacked bioelectrochemical system[J]. Chemical Engineering Journal, 2018, 354: 351-362. |
20 | 李锋, 宋浩. 微生物胞外电子传递效率的合成生物学强化[J]. 生物工程学报, 2017, 33(3): 516-534. |
LI F, SONG H. Promoting efficiency of microbial extracellular electron transfer by synthetic biology[J]. Chinese Journal of Biotechnology, 2017, 33(3): 516-534. | |
21 | 赵贞尧, 张保财, 李锋, 等. 产电细胞的合成生物学设计构建[J]. 化工学报, 2021, 72(1): 468-482. |
ZHAO Z Y, ZHANG B C, LI F, et al. Design and construction of exoelectrogens by synthetic biology[J]. CIESC Journal, 2021, 72(1): 468-482. | |
22 | 刘向, 张君奇, 张保财, 等. 强化产电微生物与电极间电子传递速率的研究进展[J]. 生物工程学报, 2021, 37(2): 361-377. |
LIU X, ZHANG J Q, ZHANG B C, et al. Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface[J]. Chinese Journal of Biotechnology, 2021, 37(2): 361-377. | |
23 | RICHTER H, NEVIN K P, JIA H F, et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[J]. Energy & Environmental Science, 2009, 2(5): 506-516. |
24 | BREUER M, ROSSO K M, BLUMBERGER J, et al. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities[J]. Journal of the Royal Society, Interface, 2015, 12(102): 20141117. |
25 | LIU Y C, ATANASSOV P. Charge transfer at biotic/abiotic interfaces in biological electrocatalysis[J]. Current Opinion in Electrochemistry, 2020, 19: 175-183. |
26 | TERAVEST M A, AJO-FRANKLIN C M. Transforming exoelectrogens for biotechnology using synthetic biology[J]. Biotechnology and Bioengineering, 2016, 113(4): 687-697. |
27 | ROSS D E, RUEBUSH S S, BRANTLEY S L, et al. Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1[J]. Applied and Environmental Microbiology, 2007, 73(18): 5797-5808. |
28 | HARTSHORNE R S, REARDON C L, ROSS D, et al. Characterization of an electron conduit between bacteria and the extracellular environment [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22169-22174. |
29 | RICHARDSON D J, EDWARDS M J, WHITE G F, et al. Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration[J]. Biochemical Society Transactions, 2012, 40(3): 493-500. |
30 | RICHARDSON D J, BUTT J N, FREDRICKSON J K, et al. The 'porin-cytochrome' model for microbe-to-mineral electron transfer[J]. Molecular Microbiology, 2012, 85(2): 201-212. |
31 | ZHAO J T, LI F, CAO Y X, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms[J]. Biotechnology Advances, 2021, 53: 107682. |
32 | COURSOLLE D, GRALNICK J A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1[J]. Molecular Microbiology, 2010, 77(4): 995-1008. |
33 | LIU Y M, WANG Z M, LIU J, et al. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA[J]. Environmental Microbiology Reports, 2014, 6(6): 776-785. |
34 | SHI L, FREDRICKSON J K, ZACHARA J M. Genomic analyses of bacterial porin-cytochrome gene clusters[J]. Frontiers in Microbiology, 2014, 5: 657. |
35 | MEHTA T, COPPI M V, CHILDERS S E, et al. Outer membrane c-type cytochromes required for Fe(Ⅲ) and Mn(Ⅳ) oxide reduction in Geobacter sulfurreducens [J]. Applied and Environmental Microbiology, 2005, 71(12): 8634-8641. |
36 | LEYS D, SCRUTTON N S. Electrical circuitry in biology: emerging principles from protein structure[J]. Current Opinion in Structural Biology, 2004, 14(6): 642-647. |
37 | REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101. |
38 | WALKER D J, ADHIKARI R Y, HOLMES D E, et al. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms[J]. The ISME Journal, 2018, 12(1): 48-58. |
39 | LOVLEY D R, MALVANKAR N S. Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function[J]. Environmental Microbiology, 2015, 17(7): 2209-2215. |
40 | GORBY Y A, YANINA S, MCLEAN J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30): 11358-11363. |
41 | BHAYA D, BIANCO N R, BRYANT D, et al. Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803[J]. Molecular Microbiology, 2000, 37(4): 941-951. |
42 | YANG Y G, WANG Z G, GAN C F, et al. Long-distance electron transfer in a filamentous Gram-positive bacterium[J]. Nature Communications, 2021, 12: 1709. |
43 | PIRBADIAN S, BARCHINGER S E, LEUNG K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12883-12888. |
44 | REARDON P N, MUELLER K T. Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens [J]. Journal of Biological Chemistry, 2013, 288(41): 29260-29266. |
45 | LOVLEY D R. Electrically conductive pili: biological function and potential applications in electronics[J]. Current Opinion in Electrochemistry, 2017, 4(1): 190-198. |
46 | LAMPA-PASTIRK S, VEAZEY J P, WALSH K A, et al. Thermally activated charge transport in microbial protein nanowires[J]. Scientific Reports, 2016, 6: 23517. |
47 | CREASEY R C G, MOSTERT A B, NGUYEN T A H, et al. Microbial nanowires-electron transport and the role of synthetic analogues[J]. Acta Biomaterialia, 2018, 69: 1-30. |
48 | REGUERA G. Microbial nanowires and electroactive biofilms[J]. FEMS Microbiology Ecology, 2018, 94(7): fiy086. |
49 | MALVANKAR N S, VARGAS M, NEVIN K P, et al. Tunable metallic-like conductivity in microbial nanowire networks[J]. Nature Nanotechnology, 2011, 6(9): 573-579. |
50 | STRYCHARZ-GLAVEN S M, SNIDER R M, GUISEPPI-ELIE A, et al. On the electrical conductivity of microbial nanowires and biofilms[J]. Energy & Environmental Science, 2011, 4(11): 4366-4397. |
51 | GU Y Q, SRIKANTH V, SALAZAR-MORALES A I, et al. Structure of Geobacter pili reveals secretory rather than nanowire behaviour[J]. Nature, 2021, 597(7876): 430-434. |
52 | VON CANSTEIN H, OGAWA J, SHIMIZU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology, 2008, 74(3): 615-623. |
53 | PHAM T H, BOON N, DE MAEYER K, et al. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation[J]. Applied Microbiology and Biotechnology, 2008, 80(6): 985-993. |
54 | MCANULTY M J, POOSARLA V G, KIM K Y, et al. Electricity from methane by reversing methanogenesis[J]. Nature Communications, 2017, 8: 15419. |
55 | OKAMOTO A, SAITO K, INOUE K, et al. Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species[J]. Energy and Environmental Science, 2014, 7(4): 1357-1361. |
56 | OKAMOTO A, NAKAMURA R, NEALSON K H, et al. Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter [J]. ChemElectroChem, 2014, 1(11): 1808-1812. |
57 | OKAMOTO A, HASHIMOTO K, NEALSON K H, et al. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7856-7861. |
58 | HUANG L Y, TANG J H, CHEN M, et al. Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens [J]. Frontiers in Microbiology, 2018, 9: 2886. |
59 | BREUER M, ROSSO K M, BLUMBERGER J. Flavin binding to the deca-heme cytochrome MtrC: insights from computational molecular simulation[J]. Biophysical Journal, 2015, 109(12): 2614-2624. |
60 | MEVERS E, SU L, PISHCHANY G, et al. An elusive electron shuttle from a facultative anaerobe[J]. eLife, 2019, 8: e48054. |
61 | RABAEY K, BOON N, HÖFTE M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science & Technology, 2005, 39(9): 3401-3408. |
62 | ZHENG T, XU Y S, YONG X Y, et al. Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells[J]. Bioresource Technology, 2015, 197: 416-421. |
63 | LIGHT S H, SU L, RIVERA-LUGO R, et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria[J]. Nature, 2018, 562(7725): 140-144. |
64 | LU L, GUEST J S, PETERS C A, et al. Wastewater treatment for carbon capture and utilization[J]. Nature Sustainability, 2018, 1(12): 750-758. |
65 | LIU C, COLÓN B C, ZIESACK M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290): 1210-1213. |
66 | THAPA B S, KIM T, PANDIT S, et al. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry[J]. Bioresource Technology, 2022, 347: 126579. |
67 | GONG Z Y, YU H, ZHANG J Q, et al. Microbial electro-fermentation for synthesis of chemicals and biofuels driven by bi-directional extracellular electron transfer[J]. Synthetic and Systems Biotechnology, 2020, 5(4): 304-313. |
68 | TREMBLAY P L, ANGENENT L T, ZHANG T. Extracellular electron uptake: among autotrophs and mediated by surfaces[J]. Trends in Biotechnology, 2017, 35(4): 360-371. |
69 | JIANG Y, ZENG R J. Bidirectional extracellular electron transfers of electrode-biofilm: mechanism and application[J]. Bioresource Technology, 2019, 271: 439-448. |
70 | ROSS D E, FLYNN J M, BARON D B, et al. Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism[J]. PLoS One, 2011, 6(2): e16649. |
71 | STRYCHARZ S M, GLAVEN R H, COPPI M V, et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens [J]. Bioelectrochemistry, 2011, 80(2): 142-150. |
72 | XIE Q Q, LU Y, TANG L, et al. The mechanism and application of bidirectional extracellular electron transport in the field of energy and environment[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(17): 1924-1969. |
73 | LI H, OPGENORTH P H, WERNICK D G, et al. Integrated electromicrobial conversion of CO2 to higher alcohols[J]. Science, 2012, 335(6076): 1596. |
74 | YANG Y, DING Y Z, HU Y D, et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway[J]. ACS Synthetic Biology, 2015, 4(7): 815-823. |
75 | LEE C R, KIM C, SONG Y E, et al. Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovata via a reducing-equivalent transfer mediator[J]. Bioresource Technology, 2018, 259: 128-135. |
76 | KASAI T, TOMIOKA Y, KOUZUMA A, et al. Overexpression of the adenylate cyclase gene cyaC facilitates current generation by Shewanella oneidensis in bioelectrochemical systems[J]. Bioelectrochemistry, 2019, 129: 100-105. |
77 | JOHNSON E T, BARON D B, NARANJO B, et al. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping[J]. Applied and Environmental Microbiology, 2010, 76(13): 4123-4129. |
78 | CHOI D, LEE S B, KIM S, et al. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions[J]. Bioresource Technology, 2014, 154: 59-66. |
79 | LI F, LI Y X, SUN L M, et al. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell[J]. Biotechnology for Biofuels, 2017, 10: 196. |
80 | ZHANG J Q, CHEN Z, LIU C J, et al. Construction of an acetate metabolic pathway to enhance electron generation of engineered Shewanella oneidensis [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 757953. |
81 | YONG X Y, FENG J, CHEN Y L, et al. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell[J]. Biosensors and Bioelectronics, 2014, 56: 19-25. |
82 | LI F, LI Y X, CAO Y X, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis [J]. Nature Communications, 2018, 9: 3637. |
83 | LI F, LI Y X, SUN L M, et al. Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of Shewanella oneidensis MR-1[J]. ACS Synthetic Biology, 2018, 7(3): 885-895. |
84 | YONG Y C, YU Y Y, YANG Y, et al. Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells[J]. Electrochemistry Communications, 2012, 19: 13-16. |
85 | VAMSHI KRISHNA K, VENKATA MOHAN S. Purification and characterization of NDH-2 protein and elucidating its role in extracellular electron transport and bioelectrogenic activity[J]. Frontiers in Microbiology, 2019, 10: 880. |
86 | DING Y, LI X L, HORSMAN G P, et al. Construction of an alternative NAD+ de novo biosynthesis pathway[J]. Advanced Science, 2021, 8(9): 2004632. |
87 | JENSEN H M, ALBERS A E, MALLEY K R, et al. Engineering of a synthetic electron conduit in living cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19213-19218. |
88 | SU L, FUKUSHIMA T, AJO-FRANKLIN C M. A hybrid cyt cmaturation system enhances the bioelectrical performance of engineered Escherichia coli by improving the rate-limiting step[J]. Biosensors and Bioelectronics, 2020, 165: 112312. |
89 | FENG J, QIAN Y, WANG Z, et al. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway[J]. Journal of Biotechnology, 2018, 275: 1-6. |
90 | VELLINGIRI A, SONG Y E, MUNUSSAMI G, et al. Overexpression of c-type cytochrome, CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(7): 2115-2122. |
91 | SUN W N, LIN Z F, YU Q Z, et al. Promoting extracellular electron transfer of Shewanella oneidensis MR-1 by optimizing the periplasmic cytochrome c network[J]. Frontiers in Microbiology, 2021, 12: 727709. |
92 | LIN T, DING W Q, SUN L M, et al. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells[J]. Nano Energy, 2018, 50: 639-648. |
93 | FAN Y Y, TANG Q, LI Y, et al. Rapid and highly efficient genomic engineering with a novel iEditing device for programming versatile extracellular electron transfer of electroactive bacteria[J]. Environmental Microbiology, 2021, 23(2): 1238-1255. |
94 | LIU X, WANG S W, XU A M, et al. Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa [J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1535-1544. |
95 | YONG X Y, SHI D Y, CHEN Y L, et al. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells[J]. Bioresource Technology, 2014, 152: 220-224. |
96 | TAN Y, ADHIKARI R Y, MALVANKAR N S, et al. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity[J]. mBio, 2017, 8(1): e02203-e02216. |
97 | LIU T, YU Y Y, DENG X P, et al. Enhanced Shewanella biofilm promotes bioelectricity generation[J]. Biotechnology and Bioengineering, 2015, 112(10): 2051-2059. |
98 | CHENG Z H, XIONG J R, MIN D, et al. Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level[J]. Biotechnology and Bioengineering, 2020, 117(5): 1294-1303. |
99 | ZHUANG Z, YANG G Q, MAI Q J, et al. Physiological potential of extracellular polysaccharide in promoting Geobacter biofilm formation and extracellular electron transfer[J]. Science of the Total Environment, 2020, 741: 140365. |
100 | YU Y Y, FANG Z, GAO L, et al. Engineering of bacterial electrochemical activity with global regulator manipulation[J]. Electrochemistry Communications, 2018, 86: 117-120. |
101 | LUO J M, WANG T T, LI X, et al. Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs[J]. Biosensors and Bioelectronics, 2018, 117: 23-31. |
102 | LUO J M, LI X, ZHANG J M, et al. Global regulator engineering enhances bioelectricity generation in Pseudomonas aeruginosa-inoculated MFCs[J]. Biosensors and Bioelectronics, 2020, 163: 112269. |
103 | KASAI T, KOUZUMA A, WATANABE K. CRP regulates D-lactate oxidation in Shewanella oneidensis MR-1[J]. Frontiers in Microbiology, 2017, 8: 869. |
104 | ISHIKI K, SHIIGI H. Kinetics of intracellular electron generation in Shewanella oneidensis MR-1[J]. Analytical Chemistry, 2019, 91(22): 14401-14406. |
105 | HOWARD E C, HAMDAN L J, LIZEWSKI S E, et al. High frequency of glucose-utilizing mutants in Shewanella oneidensis MR-1 [J]. FEMS Microbiology Letters, 2012, 327(1): 9-14. |
106 | NAKAGAWA G, KOUZUMA A, HIROSE A, et al. Metabolic characteristics of a glucose-utilizing Shewanella oneidensis strain grown under electrode-respiring conditions[J]. PLoS One, 2015, 10(9): e0138813. |
107 | CHENG L, MIN D, HE R L, et al. Developing a base-editing system to expand the carbon source utilization spectra of Shewanella oneidensis MR-1 for enhanced pollutant degradation[J]. Biotechnology and Bioengineering, 2020, 117(8): 2389-2400. |
108 | FLYNN J M, ROSS D E, HUNT K A, et al. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria[J]. mBio, 2010, 1(5): e00190-e00110. |
109 | SEKAR R, SHIN H D, DICHRISTINA T J. Activation of an otherwise silent xylose metabolic pathway in Shewanella oneidensis [J]. Applied and Environmental Microbiology, 2016, 82(13): 3996-4005. |
110 | TAO L, XIE M S, CHIEW G G Y, et al. Improving electron trans-inner membrane movements in microbial electrocatalysts[J]. Chemical Communications, 2016, 52(37): 6292-6295. |
111 | GOLDBECK C P, JENSEN H M, TERAVEST M A, et al. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli [J]. ACS Synthetic Biology, 2013, 2(3): 150-159. |
112 | DELGADO V P, PAQUETE C M, STURM G, et al. Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition[J]. Bioelectrochemistry, 2019, 129: 18-25. |
113 | LOVLEY D R, YAO J. Intrinsically conductive microbial nanowires for 'green' electronics with novel functions[J]. Trends in Biotechnology, 2021, 39(9): 940-952. |
114 | WANG F B, GU Y Q, O'BRIEN J P, et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers[J]. Cell, 2019, 177(2): 361-369.e10. |
115 | SHAPIRO D M, MANDAVA G, YALCIN S E, et al. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis[J]. Nature Communications, 2022, 13(1): 829. |
116 | LIU X, ZHAN J, JING X Y, et al. A pilin chaperone required for the expression of electrically conductive Geobacter sulfurreducens pili[J]. Environmental Microbiology, 2019, 21(7): 2511-2522. |
117 | LIU X M, GAO H Y, WARD J E, et al. Power generation from ambient humidity using protein nanowires[J]. Nature, 2020, 578(7796): 550-554. |
118 | UEKI T, WALKER D J F, WOODARD T L, et al. An Escherichia coli chassis for production of electrically conductive protein nanowires[J]. ACS Synthetic Biology, 2020, 9(3): 647-654. |
119 | UEKI T, WALKER D J F, TREMBLAY P L, et al. Decorating the outer surface of microbially produced protein nanowires with peptides[J]. ACS Synthetic Biology, 2019, 8(8): 1809-1817. |
120 | LIU X B, SHI L, GU J D. Microbial electrocatalysis: redox mediators responsible for extracellular electron transfer[J]. Biotechnology Advances, 2018, 36(7): 1815-1827. |
121 | YONG Y C, YU Y Y, YANG Y, et al. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin[J]. Biotechnology and Bioengineering, 2013, 110(2): 408-416. |
122 | MIN D, CHENG L, ZHANG F, et al. Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation[J]. Environmental Science & Technology, 2017, 51(9): 5082-5089. |
123 | SHI L, DONG H L, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. |
124 | FLEMMING H C, NEU T R, WOZNIAK D J. The EPS matrix: the "house of biofilm cells"[J]. Journal of Bacteriology, 2007, 189(22): 7945-7947. |
125 | SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894. |
126 | FLEMMING H C, WINGENDER J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623-633. |
127 | DAS T, SEHAR S, MANEFIELD M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development[J]. Environmental Microbiology Reports, 2013, 5(6): 778-786. |
128 | FURST A L, SMITH M J, LEE M C, et al. DNA hybridization to interface current-producing cells with electrode surfaces[J]. ACS Central Science, 2018, 4(7): 880-884. |
129 | SAUNDERS S H, TSE E C M, YATES M D, et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms[J]. Cell, 2020, 182(4): 919-932.e19. |
130 | ZHANG J Y, POH C L. Regulating exopolysaccharide gene wcaF allows control of Escherichia coli biofilm formation[J]. Scientific Reports, 2018, 8: 13127. |
131 | CHARLES C J, ROUT S P, PATEL K A, et al. Floc formation reduces the pH stress experienced by microorganisms living in alkaline environments[J]. Applied and Environmental Microbiology, 2017, 83(6): e02985-e02916. |
132 | REICHHARDT C, WONG C, PASSOS DA SILVA D, et al. CdrA interactions within the Pseudomonas aeruginosa biofilm matrix safeguard it from proteolysis and promote cellular packing[J]. mBio, 2018, 9(5): e01376-e01318. |
133 | BARNHART M M, CHAPMAN M R. Curli biogenesis and function[J]. Annual Review of Microbiology, 2006, 60: 131-147. |
134 | SUO D, FANG Z, YU Y-Y, et al. Synthetic curli enables efficient microbial electrocatalysis with stainless-steel electrode[J]. AIChE Journal, 2019, 66(4): e16897. |
135 | SHI M M, GAO T, JU L L, et al. Effects of FlrBC on flagellar biosynthesis of Shewanella oneidensis [J]. Molecular Microbiology, 2014, 93(6): 1269-1283. |
136 | LIU X, ZHUO S Y, JING X Y, et al. Flagella act as Geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer[J]. Biosensors and Bioelectronics, 2019, 146: 111748. |
137 | READING N C, SPERANDIO V. Quorum sensing: the many languages of bacteria[J]. FEMS Microbiology Letters, 2006, 254(1): 1-11. |
138 | JING X Y, LIU X, DENG C S, et al. Chemical signals stimulate Geobacter soli biofilm formation and electroactivity[J]. Biosensors and Bioelectronics, 2019, 127: 1-9. |
139 | LI F H, TANG Q, FAN Y Y, et al. Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in Shewanella oneidensis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(37): 23001-23010. |
140 | THORMANN K M, DUTTLER S, SAVILLE R M, et al. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP[J]. Journal of Bacteriology, 2006, 188(7): 2681-2691. |
141 | GUINOTE I B, MOREIRA R N, BARAHONA S, et al. Breaking through the stress barrier: the role of BolA in Gram-negative survival[J]. World Journal of Microbiology & Biotechnology, 2014, 30(10): 2559-2566. |
142 | FREIRE P, MOREIRA R N, ARRAIANO C M. BolA inhibits cell elongation and regulates MreB expression levels[J]. Journal of Molecular Biology, 2009, 385(5): 1345-1351. |
143 | MOREIRA R N, DRESSAIRE C, BARAHONA S, et al. BolA is required for the accurate regulation of c-di-GMP, a central player in biofilm formation[J]. mBio, 2017, 8(5): e00443-e00417. |
144 | HU Y D, WU Y C, MUKHERJEE M, et al. A near-infrared light responsive c-di-GMP module-based AND logic gate in Shewanella oneidensis [J]. Chemical Communications, 2017, 53(10): 1646-1648. |
145 | HU Y D, LIU X B, REN A T M, et al. Optogenetic modulation of a catalytic biofilm for the biotransformation of indole into tryptophan[J]. ChemSusChem, 2019, 12(23): 5142-5148. |
146 | SADHUKHAN J, LLOYD J R, SCOTT K, et al. A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2 [J]. Renewable and Sustainable Energy Reviews, 2016, 56: 116-132. |
147 | VIRDIS B, HOELZLE R D, MARCHETTI A, et al. Electro-fermentation: sustainable bioproductions steered by electricity[J]. Biotechnology Advances, 2022, 59: 107950. |
148 | TEFFT N M, TERAVEST M A. Reversing an extracellular electron transfer pathway for electrode-driven acetoin reduction[J]. ACS Synthetic Biology, 2019, 8(7): 1590-1600. |
149 | WU Z Q, WANG J S, LIU J, et al. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO2 [J]. Microbial Cell Factories, 2019, 18(1): 15. |
150 | DONG F Y, LEE Y S, GAFFNEY E M, et al. Engineering cyanobacterium with transmembrane electron transfer ability for bioelectrochemical nitrogen fixation[J]. ACS Catalysis, 2021, 11(21): 13169-13179. |
151 | TORELLA J P, GAGLIARDI C J, CHEN J S, et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): 2337-2342. |
152 | CHEN X L, CAO Y X, LI F, et al. Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via CO2 bioreduction by engineered Ralstonia eutropha [J]. ACS Catalysis, 2018, 8(5): 4429-4437. |
153 | KRIEG T, SYDOW A, FAUST S, et al. CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator [J]. Angewandte Chemie International Edition, 2018, 57(7): 1879-1882. |
154 | WU H L, PAN H J, LI Z J, et al. Efficient production of lycopene from CO2 via microbial electrosynthesis[J]. Chemical Engineering Journal, 2022, 430: 132943. |
155 | ZHANG Z Y, LI F, CAO Y X, et al. Electricity-driven 7α-hydroxylation of a steroid catalyzed by a cytochrome P450 monooxygenase in engineered yeast[J]. Catalysis Science & Technology, 2019, 9(18): 4877-4887. |
156 | BAI W, RANAIVOARISOA T O, SINGH R, et al. n-Butanol production by Rhodopseudomonas palustris TIE-1[J]. Communications Biology, 2021, 4: 1257. |
157 | FENG J, JIANG M J, LI K, et al. Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli [J]. Bioelectrochemistry, 2020, 134: 107498. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[12] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[13] | 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. |
[14] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[15] | 晏雄鹰, 王振, 娄吉芸, 张皓瑜, 黄星宇, 王霞, 杨世辉. 生物燃料高效生产微生物细胞工厂构建研究进展[J]. 合成生物学, 2023, 4(6): 1082-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||