Synthetic Biology Journal

   

Nucleic acid biosensing

YAO Linxin, SONG Lu, LI Min, ZUO Xiaolei   

  1. Institute of Molecular Medicine,Renji Hospital,School of Medicine,Shanghai Jiao Tong University,Shanghai 200127,China
  • Received:2025-03-13 Revised:2025-04-15 Published:2025-04-16
  • Contact: ZUO Xiaolei

核酸生物传感

姚林欣, 宋璐, 李敏, 左小磊   

  1. 上海交通大学医学院附属仁济医院,分子医学研究院,上海 200127
  • 通讯作者: 左小磊
  • 作者简介:姚林欣(2001—),女,硕士研究生。研究方向为框架核酸、临床检验诊断。 E-mail:ylx888@sjtu.edu.cn
    左小磊(1980—),男,研究员,博士生导师。研究方向为框架核酸、临床检验诊断、DNA信息存储等。E-mail:zuoxiaolei@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFF1200300);国家自然科学基金项目(22025404);上海市自然科学基金(23ZR1438700);上海市高水平大学创新研究团队(SHSMU-ZLCX20212602);上海市卫生健康委员会(2022JC027);国家资助博士后研究人员计划(GZB20230436)

Abstract:

Deoxyribonucleic acid (DNA) molecules store and transmit genetic information in all living organisms and some viruses. In vitro, it can be utilized as a programmable and versatile molecular self-assembling building block to construct functional materials. On the basis of the DNA double helix model and the specific rules of base complementary pairing, where adenine (A) with thymine (T) and cytosine (C) pairs with guanine (G) researchers have developed various DNA self-assembly techniques including the DNA tile technique, DNA origami and laterally developed single strand tile methods over the past few decades. These technologies have been employed to construct a variety of two- or three-dimensional nanoscale structures and devices with controllable sizes and morphologies, as well as dynamic response properties to external environmental stimulus. Researchers have continually demonstrated the exceptional construction capabilities of DNA molecules and have constructed a variety of DNA nanostructures (from simple four-arm nucleic acid junction to origami arrays up to 2-3 microns in size, from two-dimensional planar shapes to three-dimensional complex and twisted structures, and from simple nano-tweezers to command-executing DNA walkers). Due to the unparalleled programmability, precise addressability, editable biological functions, tissue permeability and inherent biocompatibility of DNA nanostructures, they have hold significant potential in molecular biology research fields such as biosensing, bioimaging, tissue engineering, and drug delivery. In this review, first, we summarize the construction of two-dimensional and three-dimensional DNA nanostructures using various DNA self-assembly technologies. Then, the dynamic transformation of DNA nanostructures driven by two distinct types of driving forces have been categorized and discussed. Finally, the prospects of biosensors based on DNA self-assembly technology, as well as the challenges in this field including enhancing the efficiency and stability of synthesized structures, advancing dynamic monitoring technology in vivo, establishing multiplex and rapid detection methods, and exploring new directions for integration with CRISPR technology, have been explored.

Key words: DNA self-assembly, 2D DNA nanostructure, 3D DNA nanostructure, dynamic DNA nanostructure, biosensing, biomarkers

摘要:

脱氧核糖核酸(DNA)分子在生命体内发挥储存和传递遗传信息的生物学功能,在体外,它还可以作为一种可编程的分子自组装纳米材料。基于DNA双螺旋模型和碱基互补配对原则,研究人员开发了多种DNA自组装技术并以此构建了尺寸、形貌可控以及具有动态响应特性的二维和三维纳米结构。鉴于DNA纳米结构具有可控的尺寸、精确的寻址能力、可定制的生物功能、良好的生物相容性等特点,其已被广泛用于生物传感、生物成像、组织工程、药物递送等分子生物学研究领域。本篇综述首先概述了利用DNA自组装技术构建的二维和三维DNA纳米结构;然后分类讨论了DNA链置换驱动以及环境刺激驱动的DNA纳米结构动态变构;并重点介绍了DNA纳米结构的生物传感应用;最后,本综述展望了基于DNA自组装技术构建的生物传感器的发展前景与面临挑战,包括提高DNA纳米结构的合成效率和稳定性、开发体内动态监测技术、建立多重检测与快速诊断方法以及探索与CRISPR技术联用的新发展方向。

关键词: DNA自组装技术, 2D DNA纳米结构, 3D DNA纳米结构, 动态DNA纳米结构, 生物传感, 生物标志物

CLC Number: